期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Selective leaching of vanadium from V-Ti magnetite concentrates by pellet calcification roasting-H_(2)SO_(4) leaching process 被引量:12
1
作者 Yi Luo Xiaokui Che +2 位作者 xinglan cui Qi Zheng Lei Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期507-513,共7页
A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as ... A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production. 展开更多
关键词 Selective leaching VANADIUM V-Ti magnetite concentrate PELLETS Sulfuric acid
下载PDF
Kinetics, thermodynamics, and equilibrium of As(Ⅲ),Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) adsorption using porous chitosan bead-supported MnFe_(2)O_(4) nanoparticles 被引量:3
2
作者 Hongxia Li Hongbing Ji +6 位作者 xinglan cui Xiaokui Che Qidong Zhang Juan Zhong Rongzhen Jin Lei Wang Yi Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第6期1107-1115,共9页
A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(... A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ)).The characteristics of CPM showed a porous structure,well dispersed MnFe_(2) O_(4),and several of hydroxyl and amino groups(-OH,-NH_(2)).Batch experiments demonstrated that the best adsorption property of As(Ⅲ),Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ) was achieved within 8 h with maximum adsorption capacities of 9.90,9.73,43.94,and 11.98 mg/g,respectively.Competitive and synergistic effects(particularly precipitation) were included in the co-adsorption mechanism of As(Ⅲ) and heavy metals.Thereinto,As(Ⅲ) was partly oxidized by MnFe_(2) O_(4) to As(V),and both were coordinated on MnFe_(2) O_(4) nanoparticles.Pb(Ⅱ) could also bind to MnFe_(2) O_(4) by ion exchange and electrostatic attraction.Furthermore,Cd(Ⅱ) and Cu(Ⅱ) tended to be coordinated on chitosan.Therefore,CPM can serve as a remediation material for water and soil co-contaminated with As(Ⅲ) and heavy metals. 展开更多
关键词 EQUILIBRIUM ADSORPTION ARSENIC Cadmium CHITOSAN MnFe_(2)O_(4)nanoparticles
下载PDF
A hybrid monolithic column based on flower-shaped zeolitic imidazolate framework for efficient capillary microextraction of brominated flame retardants
3
作者 Xuemei Wang xinglan cui +4 位作者 Hong Ji Fangbing Wang Yacong Liu Xinzhen Du Xiaoquan Lu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期3199-3201,共3页
A novel flower-shaped zeolitic imidazolate framework(ZIF) doped organic-inorganic hybrid monolithic column(ZIF-HMC) was prepared by a simple sol-gel "one-step" method and utilized for efficient capillary mic... A novel flower-shaped zeolitic imidazolate framework(ZIF) doped organic-inorganic hybrid monolithic column(ZIF-HMC) was prepared by a simple sol-gel "one-step" method and utilized for efficient capillary microextraction(CME) of four brominated flame retardants.The prepared monolithic was characterized by Fourier transform infrared,scanning electron microscopy,X-ray photoelectron spectroscopy,energy disperse spectroscopy,and N_(2) adsorption-desorption.The parameters of CME were optimized by orthogonal array design.Under the optimal conditions,the ZIF-HMC showed excellent extraction efficiency,the limit of detection(LODs) and the limit of quantification(LOQs) were in the range of0.52$3.1 mg/L and 1.7$10 mg/L,respectively,and the proposed method demonstrated good recovery(88.8%–116.6%) with the RSD less than 13.6% and a reusability of at least 30 times.The ZIF-HMC possessed great potential for separating organic pollutants and the strategy used here could be extended to prepare other derivatized HMC functionalized monoliths. 展开更多
关键词 Capillary microextraction Brominated flame retardants Hybrid monolithic column Zeolitic imidazolate framework
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部