Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also ...Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.展开更多
Today,with the rapid development of modern and large-scale pig industry,free-range pig farming is still an important part of the breeding industry.Different from large-scale pig farms,there are many shortcomings in fe...Today,with the rapid development of modern and large-scale pig industry,free-range pig farming is still an important part of the breeding industry.Different from large-scale pig farms,there are many shortcomings in feeding management,pig disease prevention and control and so on for small-scale farmers.In the long-term clinical diagnosis and production practice,it is found that sows raised by small-scale farmers often have some problems,such as non-estrus,repeated infertility and"false pregnancy",weak farrowing,stillbirth,and postpartum piglet death.This paper makes a comprehensive analysis on the performance and etiology of the above-mentioned free-range sows,and puts forward the corresponding prevention and control measures,in order to provide a theoretical basis for the feeding and management of rural free-range sows.展开更多
Background and Objectives: Exhaled nitric oxide (NO) is decreased by smoking while oxides of nitrogen such as nitrites/nitrates (NOx) are increased. It was hypothesised that in vitro cigarette smoke extract (CSE) woul...Background and Objectives: Exhaled nitric oxide (NO) is decreased by smoking while oxides of nitrogen such as nitrites/nitrates (NOx) are increased. It was hypothesised that in vitro cigarette smoke extract (CSE) would either inhibit NO generation by increasing the NO synthase inhibitor, NG, NG-dimethyl-L-arginine (ADMA) or increase NOx levels via an oxidation pathway, which in turn could be inhibited by the antioxidant N-acetylcysteine NAC. Methods: Transformed airway cells (A549) were cultured with control medium, 1.0% CSE in culture medium, or 0.8 mM NAC with 1.0% CSE. Baseline L-arginine, NOx and ADMA levels were measured in the media. Conditioned media were then sampled at 1hour, 6 hours, 24 hours, 48 hours and 72 hours after incubation. Results: CSE induced significantly higher NOx levels (mean (SD) peak increase of 135.8 (126.6)% after incubation for 6 hours (p x which was partially reversed by NAC pre-treatment. ADMA levels were also increased after CSE exposure, suggesting that it activates the NO pathway via oxidative-stress while inhibition probably occurs via both ADMA and NOS.展开更多
China suffered the new wave of indigenous COVID-19 epidemic emanating in 2022.Yangzhou as one of cities of Jiangsu,took one of its worst poundings since the epidemic broke out.The epidemic hit the city,with substantia...China suffered the new wave of indigenous COVID-19 epidemic emanating in 2022.Yangzhou as one of cities of Jiangsu,took one of its worst poundings since the epidemic broke out.The epidemic hit the city,with substantial impact on their cultural undertakings.This article gives an account of how the museums and their local communities in Yangzhou have responded to the calamities,analyzes their interactions,and shares the museum experiences of organizing cultural activities jointly with the craftspeople of local intangible cultural heritage since 2020,when COVID-19 broke out.展开更多
As a carrier of knowledge,papers have been a popular choice since ancient times for documenting everything from major historical events to breakthroughs in science and technology.With the booming development of scienc...As a carrier of knowledge,papers have been a popular choice since ancient times for documenting everything from major historical events to breakthroughs in science and technology.With the booming development of science and technology,the number of papers has been growing exponentially.Just like the fact that Internet of Things(IoT)allows the world to be connected in a flatter way,how will the network formed by massive academic papers look like?Most existing visualization methods can only handle up to hundreds of thousands of node size,which is much smaller than that of academic networks which are usually composed of millions or even more nodes.In this paper,we are thus motivated to break this scale limit and design a new visualization method particularly for super-large-scale academic networks(VSAN).Nodes can represent papers or authors while the edges means the relation(e.g.,citation,coauthorship)between them.In order to comprehensively improve the visualization effect,three levels of optimization are taken into account in the whole design of VSAN in a progressive manner,i.e.,bearing scale,loading speed,and effect of layout details.Our main contributions are two folded:(1)We design an equivalent segmentation layout method that goes beyond the limit encountered by state-of-the-arts,thus ensuring the possibility of visually revealing the correlations of larger-scale academic entities.(2)We further propose a hierarchical slice loading approach that enables users to observe the visualized graphs of the academic network at both macroscopic and microscopic levels,with the ability to quickly zoom between different levels.In addition,we propose a“jumping between nebula graphs”method that connects the static pages of many academic graphs and helps users to form a more systematic and comprehensive understanding of various academic networks.Applying our methods to three academic paper citation datasets in the AceMap database confirms the visualization scalability of VSAN in the sense that it can visualize academic networks with more than 4 million nodes.The super-large-scale visualization not only allows a galaxy-like scholarly picture unfolding that were never discovered previously,but also returns some interesting observations that may drive extra attention from scientists.展开更多
Achieving strong coupling between plasmonic oscillators can significantly modulate their intrinsic optical properties.Here,we report the direct observation of ultrafast plasmonic hot electron transfer from an Au grati...Achieving strong coupling between plasmonic oscillators can significantly modulate their intrinsic optical properties.Here,we report the direct observation of ultrafast plasmonic hot electron transfer from an Au grating array to an MoS_(2) monolayer in the strong coupling regime between localized surface plasmons(LSPs)and surface plasmon polaritons(SPPs).By means of femtosecond pump-probe spectroscopy,the measured hot electron transfer time is approximately 40 fs with a maximum external quantum yield of 1.65%.Our results suggest that strong coupling between LSPs and SPPs has synergetic effects on the generation of plasmonic hot carriers,where SPPs with a unique nonradiative feature can act as an‘energy recycle bin’to reuse the radiative energy of LSPs and contribute to hot carrier generation.Coherent energy exchange between plasmonic modes in the strong coupling regime can further enhance the vertical electric field and promote the transfer of hot electrons between the Au grating and the MoS_(2) monolayer.Our proposed plasmonic strong coupling configuration overcomes the challenge associated with utilizing hot carriers and is instructive in terms of improving the performance of plasmonic opto-electronic devices.展开更多
Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom...Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin-valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin-valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom--stacking pseudospin--and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and findings provide a more future valleytronics. an additional unpolarized complete understanding of peak at lower energy. Our valley quantum control for展开更多
A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and ...A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and size of the Pt superparticles are readily tuned by varying the structures of pyridyl-containing ligands used in the synthesis. The co-presence of CO and nitrogen-containing ligands is critical to the formation of Pt supercubes. While CO molecules play an important role in the synthesis of Pt nanocube, introducing nitrogen-containing ligands is essential to the successful assembly of those nanocubes into Pt supercubes. Our systematic studies reveal that the electrostatic attraction between positively charged ligands and nega- tively charged Pt nanocubes is the main driving force for the assembly of Pt nanocubes into supercubes. More importantly, the ligands within the Pt supercubes are readily removed at relatively low expected to exhibit unique size-selective catalysis. temperature to yield surface-clean supercubes which are展开更多
基金supported by the fund from Natural Science Foundation of Zhejiang Province,China(LY17C200017)。
文摘Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.
文摘Today,with the rapid development of modern and large-scale pig industry,free-range pig farming is still an important part of the breeding industry.Different from large-scale pig farms,there are many shortcomings in feeding management,pig disease prevention and control and so on for small-scale farmers.In the long-term clinical diagnosis and production practice,it is found that sows raised by small-scale farmers often have some problems,such as non-estrus,repeated infertility and"false pregnancy",weak farrowing,stillbirth,and postpartum piglet death.This paper makes a comprehensive analysis on the performance and etiology of the above-mentioned free-range sows,and puts forward the corresponding prevention and control measures,in order to provide a theoretical basis for the feeding and management of rural free-range sows.
文摘Background and Objectives: Exhaled nitric oxide (NO) is decreased by smoking while oxides of nitrogen such as nitrites/nitrates (NOx) are increased. It was hypothesised that in vitro cigarette smoke extract (CSE) would either inhibit NO generation by increasing the NO synthase inhibitor, NG, NG-dimethyl-L-arginine (ADMA) or increase NOx levels via an oxidation pathway, which in turn could be inhibited by the antioxidant N-acetylcysteine NAC. Methods: Transformed airway cells (A549) were cultured with control medium, 1.0% CSE in culture medium, or 0.8 mM NAC with 1.0% CSE. Baseline L-arginine, NOx and ADMA levels were measured in the media. Conditioned media were then sampled at 1hour, 6 hours, 24 hours, 48 hours and 72 hours after incubation. Results: CSE induced significantly higher NOx levels (mean (SD) peak increase of 135.8 (126.6)% after incubation for 6 hours (p x which was partially reversed by NAC pre-treatment. ADMA levels were also increased after CSE exposure, suggesting that it activates the NO pathway via oxidative-stress while inhibition probably occurs via both ADMA and NOS.
文摘China suffered the new wave of indigenous COVID-19 epidemic emanating in 2022.Yangzhou as one of cities of Jiangsu,took one of its worst poundings since the epidemic broke out.The epidemic hit the city,with substantial impact on their cultural undertakings.This article gives an account of how the museums and their local communities in Yangzhou have responded to the calamities,analyzes their interactions,and shares the museum experiences of organizing cultural activities jointly with the craftspeople of local intangible cultural heritage since 2020,when COVID-19 broke out.
文摘As a carrier of knowledge,papers have been a popular choice since ancient times for documenting everything from major historical events to breakthroughs in science and technology.With the booming development of science and technology,the number of papers has been growing exponentially.Just like the fact that Internet of Things(IoT)allows the world to be connected in a flatter way,how will the network formed by massive academic papers look like?Most existing visualization methods can only handle up to hundreds of thousands of node size,which is much smaller than that of academic networks which are usually composed of millions or even more nodes.In this paper,we are thus motivated to break this scale limit and design a new visualization method particularly for super-large-scale academic networks(VSAN).Nodes can represent papers or authors while the edges means the relation(e.g.,citation,coauthorship)between them.In order to comprehensively improve the visualization effect,three levels of optimization are taken into account in the whole design of VSAN in a progressive manner,i.e.,bearing scale,loading speed,and effect of layout details.Our main contributions are two folded:(1)We design an equivalent segmentation layout method that goes beyond the limit encountered by state-of-the-arts,thus ensuring the possibility of visually revealing the correlations of larger-scale academic entities.(2)We further propose a hierarchical slice loading approach that enables users to observe the visualized graphs of the academic network at both macroscopic and microscopic levels,with the ability to quickly zoom between different levels.In addition,we propose a“jumping between nebula graphs”method that connects the static pages of many academic graphs and helps users to form a more systematic and comprehensive understanding of various academic networks.Applying our methods to three academic paper citation datasets in the AceMap database confirms the visualization scalability of VSAN in the sense that it can visualize academic networks with more than 4 million nodes.The super-large-scale visualization not only allows a galaxy-like scholarly picture unfolding that were never discovered previously,but also returns some interesting observations that may drive extra attention from scientists.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0205700)National Basic Research Program of China(Grant Nos.2015CB932403,2017YFA0206000)+4 种基金National Science Foundation of China(Grant Nos.11674012,61422501,11374023,61521004 and 21790364)Beijing Natural Science Foundation(Grant No.L140007)Foundation for the Author of National Excellent Doctoral Dissertation of PR China(Grant No.201420)National Program for Support of Top-notch Young Professionals(Grant No.W02070003)Ministry of Education Singapore under Grant No.MOE2015-T2-2-043.
文摘Achieving strong coupling between plasmonic oscillators can significantly modulate their intrinsic optical properties.Here,we report the direct observation of ultrafast plasmonic hot electron transfer from an Au grating array to an MoS_(2) monolayer in the strong coupling regime between localized surface plasmons(LSPs)and surface plasmon polaritons(SPPs).By means of femtosecond pump-probe spectroscopy,the measured hot electron transfer time is approximately 40 fs with a maximum external quantum yield of 1.65%.Our results suggest that strong coupling between LSPs and SPPs has synergetic effects on the generation of plasmonic hot carriers,where SPPs with a unique nonradiative feature can act as an‘energy recycle bin’to reuse the radiative energy of LSPs and contribute to hot carrier generation.Coherent energy exchange between plasmonic modes in the strong coupling regime can further enhance the vertical electric field and promote the transfer of hot electrons between the Au grating and the MoS_(2) monolayer.Our proposed plasmonic strong coupling configuration overcomes the challenge associated with utilizing hot carriers and is instructive in terms of improving the performance of plasmonic opto-electronic devices.
文摘Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin-valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin-valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom--stacking pseudospin--and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and findings provide a more future valleytronics. an additional unpolarized complete understanding of peak at lower energy. Our valley quantum control for
基金supported by the National Basic Research Program of China(2011CB932403,2015CB932300)the National Natural Science Foundation of China(21420102001,21131005,21390390,21333008)
文摘A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and size of the Pt superparticles are readily tuned by varying the structures of pyridyl-containing ligands used in the synthesis. The co-presence of CO and nitrogen-containing ligands is critical to the formation of Pt supercubes. While CO molecules play an important role in the synthesis of Pt nanocube, introducing nitrogen-containing ligands is essential to the successful assembly of those nanocubes into Pt supercubes. Our systematic studies reveal that the electrostatic attraction between positively charged ligands and nega- tively charged Pt nanocubes is the main driving force for the assembly of Pt nanocubes into supercubes. More importantly, the ligands within the Pt supercubes are readily removed at relatively low expected to exhibit unique size-selective catalysis. temperature to yield surface-clean supercubes which are