Based on the variable heat capacities of the working fluid, the irreversibility coming from the com- pression and expansion processes, and the heat leak losses through the cylinder wall, an irreversible cycle model of...Based on the variable heat capacities of the working fluid, the irreversibility coming from the com- pression and expansion processes, and the heat leak losses through the cylinder wall, an irreversible cycle model of the Miller heat engine was established, from which expressions for the efficiency and work output of the cycle were derived. The performance characteristic curves of the Miller heat engine were generated through numerical calculation, from which the optimal regions of some main parameters such as the work output, efficiency and pressure ratio were determined. Moreover, the influence of the compression and expansion efficiencies, the variable heat capacities and the heat leak losses on the performance of the cycle was discussed in detail, and consequently, some significant results were obtained.展开更多
文摘Based on the variable heat capacities of the working fluid, the irreversibility coming from the com- pression and expansion processes, and the heat leak losses through the cylinder wall, an irreversible cycle model of the Miller heat engine was established, from which expressions for the efficiency and work output of the cycle were derived. The performance characteristic curves of the Miller heat engine were generated through numerical calculation, from which the optimal regions of some main parameters such as the work output, efficiency and pressure ratio were determined. Moreover, the influence of the compression and expansion efficiencies, the variable heat capacities and the heat leak losses on the performance of the cycle was discussed in detail, and consequently, some significant results were obtained.