Using an elementary method, we give a new proof of the all-associativity of octonions. As some applications, the known Taylor theorem is improved, and a new definition and new properties of octonionic determinant are ...Using an elementary method, we give a new proof of the all-associativity of octonions. As some applications, the known Taylor theorem is improved, and a new definition and new properties of octonionic determinant are also obtained.展开更多
The development and utilization of large-scale distributed power generation and the increase of impact loads represented by electric locomotives and new energy electric vehicles have brought great challenges to the st...The development and utilization of large-scale distributed power generation and the increase of impact loads represented by electric locomotives and new energy electric vehicles have brought great challenges to the stable operation of the regional power grid.To improve the prediction accuracy of power systems with source-load twoterminal uncertainties,an adaptive cubature Kalman filter algorithm based on improved initial noise covariance matrix Q0 is proposed in this paper.In the algorithm,the Q0 is used to offset the modeling error,and solves the problem of large voltage amplitude and phase fluctuation of the source-load two-terminal uncertain systems.Verification of the proposed method is implemented on the IEEE 30 node system through simulation.The results show that,compared with the traditional methods,the improved adaptive cubature Kalman filter has higher prediction accuracy,which verifies the effectiveness and accuracy of the proposed method in state estimation of the new energy power system with source-load two-terminal uncertainties.展开更多
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical ...Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter <0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter <0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.展开更多
基金Supported in part by the Doctoral Station Grant of Chinese Education Committee (20050574002), P. R. China
文摘Using an elementary method, we give a new proof of the all-associativity of octonions. As some applications, the known Taylor theorem is improved, and a new definition and new properties of octonionic determinant are also obtained.
基金supported by the Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University,the Nature Science Foundation of Gansu(No.21JR1RA255)the Gansu University Innovation Fund Project(Nos.2020A-036 and 2021B-111).
文摘The development and utilization of large-scale distributed power generation and the increase of impact loads represented by electric locomotives and new energy electric vehicles have brought great challenges to the stable operation of the regional power grid.To improve the prediction accuracy of power systems with source-load twoterminal uncertainties,an adaptive cubature Kalman filter algorithm based on improved initial noise covariance matrix Q0 is proposed in this paper.In the algorithm,the Q0 is used to offset the modeling error,and solves the problem of large voltage amplitude and phase fluctuation of the source-load two-terminal uncertain systems.Verification of the proposed method is implemented on the IEEE 30 node system through simulation.The results show that,compared with the traditional methods,the improved adaptive cubature Kalman filter has higher prediction accuracy,which verifies the effectiveness and accuracy of the proposed method in state estimation of the new energy power system with source-load two-terminal uncertainties.
基金supported by the National Natural Science Foundation of China(Grant No.41375155)the National Basic Program of China(973)(Grant No.2013CB955800)the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201306005)
文摘Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter <0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter <0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.