Based on tetradentate metalloligand LCu ([Cu(2,4-pydca)2], 2,4-pydca = pyridine-2,4-dicarboxylate) and lanthanides (Sm3+, Dy3+), two 3d-4fheterometalliccoordination polymers, namely, {[Sm2 (DMSO)4 (CH3OH) 2][LCu]3...Based on tetradentate metalloligand LCu ([Cu(2,4-pydca)2], 2,4-pydca = pyridine-2,4-dicarboxylate) and lanthanides (Sm3+, Dy3+), two 3d-4fheterometalliccoordination polymers, namely, {[Sm2 (DMSO)4 (CH3OH) 2][LCu]3·7DMSO·2CH3OH}n 1 and {[Dy2 (DMSO)3 (CH3OH)][LCu3 (DMSO)]·4DMSO·CH3OH}n 2 (DMSO = dimethyl sulfoxide), have been synthesized and well characterized by elemental analysis, Fourier-transform infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveals that both 1 and 2 crystallize in the triclinic crystal system with P-1 space group and possess the 3D framework structures, which are constructed from metalloligands LCu connecting with {Sm2} and {Dy2} clusters, respectively. The 3D structure of 1 has a 6-connected single-nodal topology with the point symbol {49 × 66}, while 2 features a different framework with the point symbol of {412 × 63}. Thermogravimetric analysis exhibits that the skeleton of both 1 and 2 collapse after 350℃. Magnetic properties of 1 and 2 have also been investigated.展开更多
Polypyrrole/porphyrin nanohybrid (PPy/Tpp(OH)4 nanohybrid) have been synthesized through a self-assembled approach, and the assynthesized PPy/Tpp(OH)4 nanohybrid are characterized by Fourier-transform infrared, X-ray ...Polypyrrole/porphyrin nanohybrid (PPy/Tpp(OH)4 nanohybrid) have been synthesized through a self-assembled approach, and the assynthesized PPy/Tpp(OH)4 nanohybrid are characterized by Fourier-transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetric analysis, Ultraviolet-visible absorption, scanning electron microscopy, and steady state fluorescence spectroscopic techniques. Formation of the PPy/Tpp(OH)4 nanohybrid dramatically improved the solubility and processability of the PPy-based nanomaterial. The nonlinear optical (NLO) properties of PPy/Tpp(OH)4 nanohybrid were measured by Z-scan at 532 nm with nanosecond laser pulse, the results indicating that PPy/Tpp(OH)4 nanohybrid exhibits a enhanced NLO property in comparison with the benchmark PPy and Tpp(OH)4 due to a combination of mechanisms.展开更多
文摘Based on tetradentate metalloligand LCu ([Cu(2,4-pydca)2], 2,4-pydca = pyridine-2,4-dicarboxylate) and lanthanides (Sm3+, Dy3+), two 3d-4fheterometalliccoordination polymers, namely, {[Sm2 (DMSO)4 (CH3OH) 2][LCu]3·7DMSO·2CH3OH}n 1 and {[Dy2 (DMSO)3 (CH3OH)][LCu3 (DMSO)]·4DMSO·CH3OH}n 2 (DMSO = dimethyl sulfoxide), have been synthesized and well characterized by elemental analysis, Fourier-transform infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveals that both 1 and 2 crystallize in the triclinic crystal system with P-1 space group and possess the 3D framework structures, which are constructed from metalloligands LCu connecting with {Sm2} and {Dy2} clusters, respectively. The 3D structure of 1 has a 6-connected single-nodal topology with the point symbol {49 × 66}, while 2 features a different framework with the point symbol of {412 × 63}. Thermogravimetric analysis exhibits that the skeleton of both 1 and 2 collapse after 350℃. Magnetic properties of 1 and 2 have also been investigated.
文摘Polypyrrole/porphyrin nanohybrid (PPy/Tpp(OH)4 nanohybrid) have been synthesized through a self-assembled approach, and the assynthesized PPy/Tpp(OH)4 nanohybrid are characterized by Fourier-transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetric analysis, Ultraviolet-visible absorption, scanning electron microscopy, and steady state fluorescence spectroscopic techniques. Formation of the PPy/Tpp(OH)4 nanohybrid dramatically improved the solubility and processability of the PPy-based nanomaterial. The nonlinear optical (NLO) properties of PPy/Tpp(OH)4 nanohybrid were measured by Z-scan at 532 nm with nanosecond laser pulse, the results indicating that PPy/Tpp(OH)4 nanohybrid exhibits a enhanced NLO property in comparison with the benchmark PPy and Tpp(OH)4 due to a combination of mechanisms.