Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated...Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.展开更多
Micro/nanoscale photonic barcodes hold great potential for broad applications in items tracking,mul-tiplexed bioassays and anti-counterfeiting.The ever-increasing demand in advanced anti-counterfeiting applications ca...Micro/nanoscale photonic barcodes hold great potential for broad applications in items tracking,mul-tiplexed bioassays and anti-counterfeiting.The ever-increasing demand in advanced anti-counterfeiting applications calls for micro/nanoscale barcodes with accurate recognition,large encoding capacity and high security level.Here,we proposed a strategy to construct the dual-stimuli responsive photonic barcodes based on the perovskite quantum dots(PQDs)doped polymer whispering-gallery-mode(WGM)microcavities via swelling-deswelling method.Benefiting from the well-defined spherical microcavities,the photoluminescence(PL)spectra of as-prepared composites exhibit a series of sharp peaks characteristics resulting from the effective WGM modulation,which constitutes the fingerprint of a specific resonator and thus allows a definition of photonic barcodes.On this basis,we achieved responsive photonic barcodes based on the volatile polar-solvent-controlled luminescence in the mi-crospheres benefitting from the space-confined microcavities and the ionic feature of the PQDs.More-over,the light-controlled photonic barcodes have further been acquired through reversibly regulating the inactivation and activation of the energy transfer(ET)process between the PQDs and photochromic dyes.The well-established protocols of PQDs@WGM enable the development of distinct responsive barcodes with multi-responsive features,which will pave an avenue to new types of flexible WGM-based components for optical data recording and security labels.展开更多
基金financially supported by the National Natural Science Foundation of China(42022046)the National Key Research and Development Program of China(2021YFF0502300)+1 种基金the Key Special Project for Introduced Talent Teams of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0403 and GML2019ZD0401)Guangdong Natural Resources Foundation(GDNRC[2022]45)。
文摘Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.
基金supported financially by the Ministry of Science and Technology of China(2017YFA0204502)the National Natural Science Foundation of China(NSFC)(22275104,21905145)+1 种基金the project ZR2021YQ06 supported by Shandong Provincial Natural Science FoundationScientific Research Foundation in Qilu University of Technology(Shandong Academy of Sciences)(2022PY013).
文摘Micro/nanoscale photonic barcodes hold great potential for broad applications in items tracking,mul-tiplexed bioassays and anti-counterfeiting.The ever-increasing demand in advanced anti-counterfeiting applications calls for micro/nanoscale barcodes with accurate recognition,large encoding capacity and high security level.Here,we proposed a strategy to construct the dual-stimuli responsive photonic barcodes based on the perovskite quantum dots(PQDs)doped polymer whispering-gallery-mode(WGM)microcavities via swelling-deswelling method.Benefiting from the well-defined spherical microcavities,the photoluminescence(PL)spectra of as-prepared composites exhibit a series of sharp peaks characteristics resulting from the effective WGM modulation,which constitutes the fingerprint of a specific resonator and thus allows a definition of photonic barcodes.On this basis,we achieved responsive photonic barcodes based on the volatile polar-solvent-controlled luminescence in the mi-crospheres benefitting from the space-confined microcavities and the ionic feature of the PQDs.More-over,the light-controlled photonic barcodes have further been acquired through reversibly regulating the inactivation and activation of the energy transfer(ET)process between the PQDs and photochromic dyes.The well-established protocols of PQDs@WGM enable the development of distinct responsive barcodes with multi-responsive features,which will pave an avenue to new types of flexible WGM-based components for optical data recording and security labels.