Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to th...Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanopartieles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing.展开更多
基金supported by the National Natural Science Foundation of China (21476024)the National Key Technology Support Program (2014BAE12B01)Beijing Municipal Science and Technology Project (Z151100003315005)
文摘Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanopartieles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing.