Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.H...Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.展开更多
二氧化碳(CO_(2))虽然被视为破坏生态环境的温室气体,但也是储量最丰富的碳资源,对其进行转化和利用将对社会环境和能源结构产生深远影响.电化学还原CO_(2)(CO_(2)RR)不仅转化效率高,而且成本较低,有望实现规模化生产.在众多催化剂中,...二氧化碳(CO_(2))虽然被视为破坏生态环境的温室气体,但也是储量最丰富的碳资源,对其进行转化和利用将对社会环境和能源结构产生深远影响.电化学还原CO_(2)(CO_(2)RR)不仅转化效率高,而且成本较低,有望实现规模化生产.在众多催化剂中,廉价易得的铜基催化剂被认为是电化学催化还原CO_(2)生成高附加值产物的理想催化剂之一,其中铜氧化物的存在是CO_(2)RR生成高附加值产物的关键.然而,CO_(2)RR过程是在负电位下进行的,当施加电位低于‒0.1 VRHE时,铜氧化物很容易被还原为金属态铜.因此,催化剂稳定氧化态铜的能力在保持连续、高效和稳定的CO_(2)RR产多碳产物性能中至关重要.本文将简单的O_(2)等离子体处理技术与静电纺丝技术相结合,合成了多孔碳纳米纤维负载的Cu/Cu_(x)O异质结催化剂,并考察了其催化CO_(2)RR的性能.在静电纺丝过程中,Cu-ZIF-8前驱体的加入使得热处理后的原丝纤维中形成了丰富的网络贯穿多孔结构,该结构有效地实现了铜纳米颗粒的均匀分散;随后,通过O_(2)等离子体处理技术,在碳纳米纤维中构建了大量的开放介孔,为CO_(2)的吸附和反应提供了有利环境,并使Cu/Cu_(x)O异质结位点暴露于反应界面.电化学性能测试结果表明,在400 mA cm^(‒2)电流密度下,独特的Cu/Cu_(x)O异质结活性位点电催化还原CO_(2)生成乙醇的法拉第效率可达70.7%,该性能优于未经O_(2)等离子体处理的多孔铜纳米纤维.此外,高暴露的Cu/Cu_(x)O异质结活性位点显著地增加实际参与反应的活性位点数量,经计算Cu/Cu_(x)O异质结CO_(2)RR产乙醇的质量活性高达8.4 A mg^(‒1),是目前报道生产乙醇的较高质量活性.多孔碳纳米纤维衬底不仅具有协同电子输运能力,而且在CO_(2)RR测试中施加的负电压有助于维持Cu/Cu_(x)O异质结构的稳定性,使其在高电流密度下能够保持长时间的催化稳定性.此外,本文利用原位拉曼光谱和红外光谱、有限元模拟及密度泛函理论计算等方法深入研究了Cu/Cu_(x)O异质结的催化机理.原位拉曼光谱和红外光谱表征结果证实了在CO_(2)RR过程中Cu_(x)O的动态稳定状态以及关键信号*CO和C‒C键的存在;理论计算表明,Cu/Cu_(x)O异质结的存在促进了关键中间体*CO的溢流,降低了C‒C耦合过程的反应能垒,从而提高了还原产物乙醇的产率.综上,本文成功地在多孔铜纳米纤维中引入氧化物物种,并优化了纤维孔结构.其表现出了较好的电催化还原CO_(2)性能,可高选择性生成乙醇,其独特的多孔碳纤维结构充分暴露了活性位点,实现了较高的质量活性.本文所采用的催化剂组分和微观结构的调控策略为提升电催化中催化剂稳定性和催化活性提供了有益的借鉴.展开更多
Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materia...Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.展开更多
近年来,工业化的高速推进和化石燃料的大量消耗,不仅造成严重的温室效应,而且加剧了能源危机和环境恶化等问题.电催化CO_(2)还原技术可将温室气体CO_(2)转化为具有经济价值的小分子化合物,且可以耦合间歇性可再生能源(如太阳能、风能、...近年来,工业化的高速推进和化石燃料的大量消耗,不仅造成严重的温室效应,而且加剧了能源危机和环境恶化等问题.电催化CO_(2)还原技术可将温室气体CO_(2)转化为具有经济价值的小分子化合物,且可以耦合间歇性可再生能源(如太阳能、风能、潮汐能等)产生的电力,目前已成为实现碳中和目标最有前景的技术途径之一.然而,由于CO_(2)分子化学惰性较强,需要较高的过电位才能将其活化,导致其转化效率低.铋作为一种无毒无害、价格低廉且具有较高析氢过电位的非贵金属材料,可有效地促进CO_(2)电还原为甲酸.但受质量活性、稳定性和产率的限制,铋基催化剂目前仍难以实现工业化应用.本文采用静电纺丝技术结合热处理方法制备了碳层封装的超小铋纳米颗粒,并用于二氧化碳电还原制甲酸.透射电镜等表征结果表明,铋纳米颗粒均匀地分散于碳纳米纤维中.电化学测试结果表明,在900℃下煅烧2 h制得的Bi/CNFs-900催化剂具有较好的电还原CO_(2)为甲酸的性能.在较宽的电化学窗口内,甲酸的法拉第效率均在90%以上,在-1.20 V vs.RHE的电位下实现了-232.2 mA cm^(-2)的电流密度.该催化剂表现出较高的质量活性(-1.6 A mg-_(Bi)^(-1))和较高的甲酸产率(29.8 mol h^(-1)cm^(-2)g^(-1)),分别是纯铋颗粒质量活性(-0.23 A mg-_(Bi)^(-1))的7.05倍,甲酸产率(4.2 mol h^(-1)cm^(-2)g^(-1))的7.07倍.密度泛函理论计算与原位拉曼光谱结果表明,Bi/CNFs-900能够有效地降低关键中间体*OCHO的吉布斯自由能垒.Bi/CNFs-900具有较好的催化活性和选择性的主要原因为:(1)热解过程中碳纤维对铋纳米颗粒的迁移起到一定限制作用,使得更多的活性位点得以暴露,同时大大降低了金属的实际负载量;(2)铋与周围的碳层存在静电相互作用,可以有效地降低界面电荷的转移电阻,促进电子的快速转移;(3)碳纤维的限域作用也有效地抑制了催化反应过程中Bi纳米颗粒的聚集,使Bi/CNFs-900具有良好的稳定性.综上,本文制得了碳纳米纤维包覆铋纳米颗粒,制备方法简单,经济可行,为设计高性能铋基催化剂并实现二氧化碳电还原制甲酸的应用提供借鉴.展开更多
Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelect...Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelectrochemical(PEC)water splitting.However,its PEC performance is severely hindered owing to poor surface charge transfer,surface recombination at the photoanode/electrolyte junction,and sluggish oxygen evolution reaction(OER)kinetics.In this regard,a novel solution was developed in this study to address these issues by decorating the surface of BiVO_(4)with cobalt sulfide,whose attractive features such as low cost,high conductivity,and rapid charge-transfer ability assisted in improving the PEC activity of the BiVO_(4)photoanode.The fabricated photoanode exhibited a significantly enhanced photocurrent density of 3.2 m A cm^(-2)under illumination at 1.23 V vs.a reversible hydrogen electrode,which is more than 2.5 times greater than that of pristine BiVO_(4).Moreover,the Co S/BiVO_(4)photoanode also exhibited considerable improvements in the charge injection yield(75.8%vs.36.7%for the bare BiVO_(4)film)and charge separation efficiency(79.8%vs.66.8%for the pristine BiVO_(4)film).These dramatic enhancements were primarily ascribed to rapid charge-transport kinetics and efficient reduction of the anodic overpotential for oxygen evolution enabled by the surface modification of BiVO_(4)by Co S.This study provides valuable suggestions for designing efficient photocatalysts via surface modification to improve the PEC performance.展开更多
The catalytic performance of Molybdenum disulfide(MoS_(2)) has been still far from that of Pt-based catalysts for inadequate active sites and sluggish electron transfer kinetics. Through engineering the interface betw...The catalytic performance of Molybdenum disulfide(MoS_(2)) has been still far from that of Pt-based catalysts for inadequate active sites and sluggish electron transfer kinetics. Through engineering the interface between MoS_(2)-based materials and supported substrates, hybrid Ru-doped MoS_(2) on carbonized lignin(CL) is designed and prepared as efficient catalyst for hydrogen evolution reaction(HER). The CL substrate not only facilitates the growth of MoS_(2) nanoflowers, but also promotes the electron transfer. Ru doping increases active sites greatly for HER. The hybrid catalyst achieves a low onset overpotential of 25 mV and a low Tafel slope of 46 m V dec^(-1). The favorable HER activity ascribes to the interfacial interaction between MoS_(2) and CL. Density functional theory calculations further confirm the improved HER performance with doped Ru atoms. This study presents a prototype application to design electrocatalysts with enhanced carrier mobility and high-density active sites based on interface effect.展开更多
Variational mode decomposition(VMD) has been proved to be useful for extraction of fault-induced transients of rolling bearings. Multi-bandwidth mode manifold(Triple M, TM) is one variation of the VMD, which units mul...Variational mode decomposition(VMD) has been proved to be useful for extraction of fault-induced transients of rolling bearings. Multi-bandwidth mode manifold(Triple M, TM) is one variation of the VMD, which units multiple fault-related modes with different bandwidths by a nonlinear manifold learning algorithm named local tangent space alignment(LTSA). The merit of the TM method is that the bearing fault-induced transients extracted contain low level of in-band noise without optimization of the VMD parameters. However, the determination of the neighborhood size of the LTSA is time-consuming, and the extracted fault-induced transients may have the problem of asymmetry in the up-and-down direction. This paper aims to improve the efficiency and waveform symmetry of the TM method.Specifically, the multi-bandwidth modes consisting of the fault-related modes with different bandwidths are first obtained by repeating the recycling VMD(RVMD) method with different bandwidth balance parameters. Then, the LTSA algorithm is performed on the multi-bandwidth modes to extract their inherent manifold structure, in which the natural nearest neighbor(Triple N, TN) algorithm is adopted to efficiently and reasonably select the neighbors of each data point in the multi-bandwidth modes. Finally, a weight-based feature compensation strategy is designed to synthesize the low-dimensional manifold features to alleviate the asymmetry problem, resulting in a symmetric TM feature that can represent the real fault transient components. The major contribution of the improved TM method for bearing fault diagnosis is that the pure fault-induced transients are extracted efficiently and are symmetrical as the real. One simulation analysis and two experimental applications in bearing fault diagnosis validate the enhanced performance of the improved TM method over the traditional methods. This research proposes a bearing fault diagnosis method which has the advantages of high efficiency, good waveform symmetry and enhanced in-band noise removal capability.展开更多
The spatial distributions of lead, arsenic, and copper (Pb, As, and Cu, respectively) in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica, are presented. The mean concentrations ...The spatial distributions of lead, arsenic, and copper (Pb, As, and Cu, respectively) in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica, are presented. The mean concentrations of Pb, As, and Cu are 1.04±1.56 pg/g, 0.39±0.08 pg/g, and 11.2±14.4 pg/g, respectively. It is estimated that anthropogenic contributions are dominant for Pb, As, and Cu. Spatially, Pb concentrations show an exponentially decreasing trend from the coast inland, while a moderate decreasing trend is observed for Cu concentrations in the coastal area (below 2,000 m above sea level (a.s.1.)). In the intermediate area (2,000-3,000 m a.s.1.), the concentrations and enrichment factors of all these elements show high variability due to the complicated characteristics of climate and environment. On the inland plateau (above 3,000 m a.s.1.), the high concentrations of As and Pb are induced by high deposition efficiency, the existence of polar stratospheric precipitation, and the different fraction deposition to East Antarctica. The extremely high concentrations with maximum values of 9.59 pg/g and 69.9 pg/g for Pb and Cu, respectively, are suggested to result mainly from local human activities at the station. Our results suggest that source, transport pathway, and deposition pattern, rather than distance from the coast or altitude, lead to the spatial distributions of Pb, As, and Cu; and it is further confirmed by spatial variations of the three metals deposited over the whole continent of Antarctica.展开更多
Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.Howe...Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.However,the surfaces of wide-bandgap perovskite films are densely populated with defects,leading to severe non-radiative recombination and energy loss.As a consequence,the power conversion efficiency(PCE)of perovskite/organic TSCs lags behind that of other TSC counterparts.To address these issues,we designed a functional ammonium salt,4-(2-hydroxyethyl)piperazin-1-ium iodide(Pzol),comprising a piperazine iodide and a terminated hydroxyl group,which was applied for post-treating the perovskite surface.Our findings reveal that Pzol reacts with and consumes residual PbX_(2)(X:I or Br)to form a 2D perovskite component,thereby eliminating Pb^(0)defects,while the terminated hydroxyl group in PZOI can also passivate uncoordinated Pb^(2+).Consequently,the shallow/deep-level defect densities of the 2D/3D perovskite film were significantly reduced,leading to an enhanced PCE of single-junction 2D/3D wide-bandgap perovskite solar cells to 18.18% with a reduced energy loss of 40 mev.Importantly,the corresponding perovskite/organic TSCs achieved a remarkable PCE of 24.05% with enhanced operational stability(T_(90)~500h).展开更多
It is challenging to cooperatively improve the nonlinear optical(NLO)efficiency and the laser-induced damage threshold(LIDT).This work reports a novel IR NLO materials CsInP_(2)S_(7)(CIPS)designed by combination the s...It is challenging to cooperatively improve the nonlinear optical(NLO)efficiency and the laser-induced damage threshold(LIDT).This work reports a novel IR NLO materials CsInP_(2)S_(7)(CIPS)designed by combination the strategies of alkali metals substitution and microscopic NLO units PS4 introduction based on AgGaS_(2).CIPS was composed of strongly distorted[InS_(6)]^(9-)octahedra and[P_(2)S_(7)]4-dimers constructed by corner-sharing[PS_(4)]^(3-),which increase the NLO efficiency and decrease thermal expansion anisotropy simultaneously.Compared with AgGaS_(2),CIPS exhibited strong phase matchable NLO response ca.1.1×AGS@2.1μm,high LIDT ca.20.8×AgGaS_(2),and IR transparency up to 15.3μm.Structural analysis and theoretical investigation confirmed that large SHG effect and ultrahigh LIDT of CIPS originated from the synergistic contribution of[InS_(6)]^(9-)octahedra and[P_(2)S_(7)]4-dimers.These results indicate that CIPS is a promising NLO candidate in the mid-IR region,and this study provides a new approach for developing potential NLO-LIDT compatible materials.展开更多
In electrocatalytic water splitting,low-cost dual-functional catalysts can not only reduce costs but also avoid cross-contamination of cathode and anode.However,the orderly aggregation of active sites for hydrogen evo...In electrocatalytic water splitting,low-cost dual-functional catalysts can not only reduce costs but also avoid cross-contamination of cathode and anode.However,the orderly aggregation of active sites for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)into a specific catalyst is very challenging.In this study,a Co/Fe_(3)O_(4)Janus heterojunction supported on carbon fiber paper(J-CoFe-CFP)is designed and successfully synthesized.Generally,Co-Fe oxides have preferable OER activity but weak HER activity.However,in J-CoFe-CFP,due to the intense and special electronic interaction of different substances(Co and Fe3O4)in the Janus heterogeneous interface,a huge number of tidy high-quality HER and OER active sites are uniformly distributed on the interface simultaneously,which endows the catalyst with both excellent HER and OER performance.In HER,the overpotential@10 mA·cm^(−2)(ηHER)is only 53.9 mV,and the Tafel slope is 43.7 mV·dec^(−1).In OER,theηis 272 mV,and the Tafel slope is 50.2 mV·dec^(−1),much lower than those of RuO_(2)/CFP.In the J-CoFe-CFP||J-CoFe-CFP two-electrode system,the required voltage is only 1.26 V at the beginning and 1.56 V@10 mA·cm^(−2),much lower than those of RuO_(2)/CFP||20%Pt/C/CFP.This work provides a Janus heterojunction pathway for bifunctional water electrolysis catalysts.展开更多
As parameter independent yet simple techniques,the energy operator(EO)and its variants have received considerable attention in the field of bearing fault feature detection.However,the performances of these improved EO...As parameter independent yet simple techniques,the energy operator(EO)and its variants have received considerable attention in the field of bearing fault feature detection.However,the performances of these improved EO techniques are subjected to the limited number of EOs,and they cannot reflect the non-linearity of the machinery dynamic systems and affect the noise reduction.As a result,the fault-related transients strengthened by these improved EO techniques are still subject to contamination of strong noises.To address these issues,this paper presents a novel EO fusion strategy for enhancing the bearing fault feature nonlinearly and effectively.Specifically,the proposed strategy is conducted through the following three steps.First,a multi-dimensional information matrix(MDIM)is constructed by performing the higher order energy operator(HOEO)on the analysis signal iteratively.MDIM is regarded as the fusion source of the proposed strategy with the properties of improving the signal-to-interference ratio and suppressing the noise in the low-frequency region.Second,an enhanced manifold learning algorithm is performed on the normalized MDIM to extract the intrinsic manifolds correlated with the fault-related impulses.Third,the intrinsic manifolds are weighted to recover the fault-related transients.Simulation studies and experimental verifications confirm that the proposed strategy is more effective for enhancing the bearing fault feature than the existing methods,including HOEOs,the weighting HOEO fusion,the fast Kurtogram,and the empirical mode decomposition.展开更多
Nonlinear optical(NLO)crystals are core materials in laser frequency-conversion technique,and the requirement on the laser wavelength varies from one application to another.Now,the commercial NLO crystals,e.g.,KDP,LBO...Nonlinear optical(NLO)crystals are core materials in laser frequency-conversion technique,and the requirement on the laser wavelength varies from one application to another.Now,the commercial NLO crystals,e.g.,KDP,LBO,BBO,KTP,AgGaS_(2),ZnGeP_(2),et al.,have prevailed in ultraviolet(UV)/visible and near-/mid-infrared region for decades.展开更多
Nonlinear optical(NLO)crystals can efficiently convert the frequency of common solid-state laser with fixed or limited wavelengths.Since the first observation of second-harmonic generation(SHG)phenomenon in the early ...Nonlinear optical(NLO)crystals can efficiently convert the frequency of common solid-state laser with fixed or limited wavelengths.Since the first observation of second-harmonic generation(SHG)phenomenon in the early 1960s,they have played an increasing role in the fields of laser spectra,precision measurements,and quantum information,as well as industrial laser processing,and so on.However,it is still challenging to rationally design and synthesize new NLO crystals.展开更多
An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the p...An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.展开更多
As critical components in modern aerospace productions,rolling element bearings(REBs)generally work under varying speed conditions,which brings great challenges to their operating health monitoring.Some novel time–fr...As critical components in modern aerospace productions,rolling element bearings(REBs)generally work under varying speed conditions,which brings great challenges to their operating health monitoring.Some novel time–frequency decomposition(TFD)algorithms are established recently to extract nonlinear features from the non-stationary signals effectively,which are promising for realizing fault diagnosis of REBs under varying speed conditions.However,numerous personal experiences must be incorporated and the anti-noise performance of these methods needs to be further enhanced.Given these issues,a synchronous chirp mode extraction(SCME)-based REB fault diagnosis method is proposed for the health monitoring of REBs under varying speed conditions in this study.It mainly consists of following two parts.(a)The shaft rotational frequency(SRF)is initially estimated from the low-frequency band of the vibration signal.Simultaneously,an adaptive refining strategy is incorporated to obtain a suitable bandwidth parameter.(b)A cycle-one-step estimation frame is constructed to extract synchronous modes from the envelope waveform of the vibration signal.Meanwhile,a synchronous mode spectrum(SMS)is generated using the information of the extracted synchronous modes,which is a novel REBs fault diagnosis technique with tacholess and resampling-free.In contrast to the current TFD algorithms,the proposed method needs fewer input parameters and owns a well anti-noise performance because there is no iterative optimization in the procedure of construction of SMS.As a result,the health conditions of REBs are evaluated by detecting the exhibited features in the SMS.Simulations and experiments are conducted to validate the effectiveness of the proposed method in terms of REB fault diagnosis.Analysis results demonstrate that the proposed method outperforms the current TFD algorithm and the conventional order tracking technique for fault diagnosis of REB under varying speed conditions.展开更多
We propose and experimentally demonstrate a novel physical layer encryption scheme for high-speed optical communication. A 10 Gb/s on-off keying signal is secretly transmitted over 100 km standard single-mode fiber.Th...We propose and experimentally demonstrate a novel physical layer encryption scheme for high-speed optical communication. A 10 Gb/s on-off keying signal is secretly transmitted over 100 km standard single-mode fiber.The intensity-modulated message is secured by the encryption mechanism, which is composed of an external noise source and an internal time-delayed feedback loop. The external noise serves as an entropy source with sufficient randomness. The feedback loop structure in the transmitter introduces a time-domain encryption key space, and a corresponding open-loop configuration at the receiver side is used for synchronization and decryption.Experiment results show the effectiveness of the proposed scheme. For a legitimate terminal, bit error rate below10-8 can be obtained. Decryption degradations with the mismatch of different hardware parameters are researched. The time delay in the feedback loop provides a sensitive encryption key. For other hardware parameters,the system is robust enough for synchronization. Meanwhile, the time-delay signature of the loop is able to be well concealed by the external noise. Moreover, the proposed scheme can support density wavelength division multiplexing transmission with a relatively simple structure. This work also provides a new concept to establish optical secure communication by combining a time-delayed feedback chaotic system and random noise.展开更多
Iron-oxidizing strain(FeOB)and iron modified biochars have been shown arsenic(As)reme-diation ability in the environment.However,due to the complicated soil environment,few field experiment has been conducted.The stud...Iron-oxidizing strain(FeOB)and iron modified biochars have been shown arsenic(As)reme-diation ability in the environment.However,due to the complicated soil environment,few field experiment has been conducted.The study was conducted to investigate the potential of iron modified biochar(BC-FeOS)and biomineralization by a new found FeOB to remediate As-contaminated paddy field.Compared with the control,the As contents of G_(B)(BC-FeOS),G_(F)(FeOB),G_(FN)(FeOB and nitrogen fertilizer),G_(BF)(BC-FeOS and FeOB)and G_(BFN)(BC-FeOS,FeOB and nitrogen fertilizer)treatments in pore water decreased by 36.53%-80.03%and the microbial richness of iron-oxidizing bacteria in these treatments increased in soils at the rice maturation stage.The concentrations of available As of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) at the tillering stage were significantly decreased by 10.78%-55.48%.The concentrations of non-specifically absorbed and specifically absorbed As fractions of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) in soils were decreased and the amorphous and poorly crystalline hydrated Fe and Al oxidebound fraction was increased.Moreover,the As contents of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) in rice grains were significantly decreased(*P<0.05)and the total As contents of G_(FN),G_(BF) and G_(BFN) were lower than the standard limit of the National Standard for Food Safety(GB 2762-2017).Compared with the other treatments,G_(BFN) showed the greatest potential for the effective remediation of As-contaminated paddy fields.展开更多
基金supported by the National Natural Science Foundation of China(22379100,U21A20312)the Shenzhen Science and Technology Program(Grant No.20231121200418001)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120084)the Key Project of Department of Education of Guangdong Province(2023ZDZX3020)。
文摘Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
文摘二氧化碳(CO_(2))虽然被视为破坏生态环境的温室气体,但也是储量最丰富的碳资源,对其进行转化和利用将对社会环境和能源结构产生深远影响.电化学还原CO_(2)(CO_(2)RR)不仅转化效率高,而且成本较低,有望实现规模化生产.在众多催化剂中,廉价易得的铜基催化剂被认为是电化学催化还原CO_(2)生成高附加值产物的理想催化剂之一,其中铜氧化物的存在是CO_(2)RR生成高附加值产物的关键.然而,CO_(2)RR过程是在负电位下进行的,当施加电位低于‒0.1 VRHE时,铜氧化物很容易被还原为金属态铜.因此,催化剂稳定氧化态铜的能力在保持连续、高效和稳定的CO_(2)RR产多碳产物性能中至关重要.本文将简单的O_(2)等离子体处理技术与静电纺丝技术相结合,合成了多孔碳纳米纤维负载的Cu/Cu_(x)O异质结催化剂,并考察了其催化CO_(2)RR的性能.在静电纺丝过程中,Cu-ZIF-8前驱体的加入使得热处理后的原丝纤维中形成了丰富的网络贯穿多孔结构,该结构有效地实现了铜纳米颗粒的均匀分散;随后,通过O_(2)等离子体处理技术,在碳纳米纤维中构建了大量的开放介孔,为CO_(2)的吸附和反应提供了有利环境,并使Cu/Cu_(x)O异质结位点暴露于反应界面.电化学性能测试结果表明,在400 mA cm^(‒2)电流密度下,独特的Cu/Cu_(x)O异质结活性位点电催化还原CO_(2)生成乙醇的法拉第效率可达70.7%,该性能优于未经O_(2)等离子体处理的多孔铜纳米纤维.此外,高暴露的Cu/Cu_(x)O异质结活性位点显著地增加实际参与反应的活性位点数量,经计算Cu/Cu_(x)O异质结CO_(2)RR产乙醇的质量活性高达8.4 A mg^(‒1),是目前报道生产乙醇的较高质量活性.多孔碳纳米纤维衬底不仅具有协同电子输运能力,而且在CO_(2)RR测试中施加的负电压有助于维持Cu/Cu_(x)O异质结构的稳定性,使其在高电流密度下能够保持长时间的催化稳定性.此外,本文利用原位拉曼光谱和红外光谱、有限元模拟及密度泛函理论计算等方法深入研究了Cu/Cu_(x)O异质结的催化机理.原位拉曼光谱和红外光谱表征结果证实了在CO_(2)RR过程中Cu_(x)O的动态稳定状态以及关键信号*CO和C‒C键的存在;理论计算表明,Cu/Cu_(x)O异质结的存在促进了关键中间体*CO的溢流,降低了C‒C耦合过程的反应能垒,从而提高了还原产物乙醇的产率.综上,本文成功地在多孔铜纳米纤维中引入氧化物物种,并优化了纤维孔结构.其表现出了较好的电催化还原CO_(2)性能,可高选择性生成乙醇,其独特的多孔碳纤维结构充分暴露了活性位点,实现了较高的质量活性.本文所采用的催化剂组分和微观结构的调控策略为提升电催化中催化剂稳定性和催化活性提供了有益的借鉴.
基金supported by the National Natural Science Foundation of China(U21A20312,22172099,21975162,51902209)the Natural Science Foundation of Guangdong(2020A1515010840)the Shenzhen Science and Technology Program(SGDX20201103095802006,RCBS20200714114819161,JCYJ20190808111801674,JCYJ20200109105803806,RCYX20200714114535052)。
文摘Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction.
文摘近年来,工业化的高速推进和化石燃料的大量消耗,不仅造成严重的温室效应,而且加剧了能源危机和环境恶化等问题.电催化CO_(2)还原技术可将温室气体CO_(2)转化为具有经济价值的小分子化合物,且可以耦合间歇性可再生能源(如太阳能、风能、潮汐能等)产生的电力,目前已成为实现碳中和目标最有前景的技术途径之一.然而,由于CO_(2)分子化学惰性较强,需要较高的过电位才能将其活化,导致其转化效率低.铋作为一种无毒无害、价格低廉且具有较高析氢过电位的非贵金属材料,可有效地促进CO_(2)电还原为甲酸.但受质量活性、稳定性和产率的限制,铋基催化剂目前仍难以实现工业化应用.本文采用静电纺丝技术结合热处理方法制备了碳层封装的超小铋纳米颗粒,并用于二氧化碳电还原制甲酸.透射电镜等表征结果表明,铋纳米颗粒均匀地分散于碳纳米纤维中.电化学测试结果表明,在900℃下煅烧2 h制得的Bi/CNFs-900催化剂具有较好的电还原CO_(2)为甲酸的性能.在较宽的电化学窗口内,甲酸的法拉第效率均在90%以上,在-1.20 V vs.RHE的电位下实现了-232.2 mA cm^(-2)的电流密度.该催化剂表现出较高的质量活性(-1.6 A mg-_(Bi)^(-1))和较高的甲酸产率(29.8 mol h^(-1)cm^(-2)g^(-1)),分别是纯铋颗粒质量活性(-0.23 A mg-_(Bi)^(-1))的7.05倍,甲酸产率(4.2 mol h^(-1)cm^(-2)g^(-1))的7.07倍.密度泛函理论计算与原位拉曼光谱结果表明,Bi/CNFs-900能够有效地降低关键中间体*OCHO的吉布斯自由能垒.Bi/CNFs-900具有较好的催化活性和选择性的主要原因为:(1)热解过程中碳纤维对铋纳米颗粒的迁移起到一定限制作用,使得更多的活性位点得以暴露,同时大大降低了金属的实际负载量;(2)铋与周围的碳层存在静电相互作用,可以有效地降低界面电荷的转移电阻,促进电子的快速转移;(3)碳纤维的限域作用也有效地抑制了催化反应过程中Bi纳米颗粒的聚集,使Bi/CNFs-900具有良好的稳定性.综上,本文制得了碳纳米纤维包覆铋纳米颗粒,制备方法简单,经济可行,为设计高性能铋基催化剂并实现二氧化碳电还原制甲酸的应用提供借鉴.
文摘Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelectrochemical(PEC)water splitting.However,its PEC performance is severely hindered owing to poor surface charge transfer,surface recombination at the photoanode/electrolyte junction,and sluggish oxygen evolution reaction(OER)kinetics.In this regard,a novel solution was developed in this study to address these issues by decorating the surface of BiVO_(4)with cobalt sulfide,whose attractive features such as low cost,high conductivity,and rapid charge-transfer ability assisted in improving the PEC activity of the BiVO_(4)photoanode.The fabricated photoanode exhibited a significantly enhanced photocurrent density of 3.2 m A cm^(-2)under illumination at 1.23 V vs.a reversible hydrogen electrode,which is more than 2.5 times greater than that of pristine BiVO_(4).Moreover,the Co S/BiVO_(4)photoanode also exhibited considerable improvements in the charge injection yield(75.8%vs.36.7%for the bare BiVO_(4)film)and charge separation efficiency(79.8%vs.66.8%for the pristine BiVO_(4)film).These dramatic enhancements were primarily ascribed to rapid charge-transport kinetics and efficient reduction of the anodic overpotential for oxygen evolution enabled by the surface modification of BiVO_(4)by Co S.This study provides valuable suggestions for designing efficient photocatalysts via surface modification to improve the PEC performance.
基金supported by National Natural Science Foundation of China (21705036, 21975067, 11974105, and 11634001)National Basic Research Programs of China (2016YFA0300901)+3 种基金Natural Science Foundation of Hunan Province, China (2018JJ3035)Fundamental Research Funds for the Central Universities from Hunan Universityfinancially supported by the fund of Prof. Hong from University of Macao (SRG201600092-IAPME, MYRG2018-00079-IAPME, MYRG2019-00115-IAPME)the Science and Technology Development Fund, Macao SAR (FDCT081/2017/A2, FDCT0059/2018/A2, FDCT009/2017/AMJ)
文摘The catalytic performance of Molybdenum disulfide(MoS_(2)) has been still far from that of Pt-based catalysts for inadequate active sites and sluggish electron transfer kinetics. Through engineering the interface between MoS_(2)-based materials and supported substrates, hybrid Ru-doped MoS_(2) on carbonized lignin(CL) is designed and prepared as efficient catalyst for hydrogen evolution reaction(HER). The CL substrate not only facilitates the growth of MoS_(2) nanoflowers, but also promotes the electron transfer. Ru doping increases active sites greatly for HER. The hybrid catalyst achieves a low onset overpotential of 25 mV and a low Tafel slope of 46 m V dec^(-1). The favorable HER activity ascribes to the interfacial interaction between MoS_(2) and CL. Density functional theory calculations further confirm the improved HER performance with doped Ru atoms. This study presents a prototype application to design electrocatalysts with enhanced carrier mobility and high-density active sites based on interface effect.
基金Supported by National Natural Science Foundation of China (Grant Nos. 51805342,51875376, 52007128)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK20180842)+2 种基金China Postdoctoral Science Foundation (Grant Nos. 2021M692354, 2018M640514)Suzhou Prospective Research Program of China (Grant No. SYG201932)Jiangsu Provincial Natural Science Fund for Colleges and Universities of China (Grant No. 18KJB470022)。
文摘Variational mode decomposition(VMD) has been proved to be useful for extraction of fault-induced transients of rolling bearings. Multi-bandwidth mode manifold(Triple M, TM) is one variation of the VMD, which units multiple fault-related modes with different bandwidths by a nonlinear manifold learning algorithm named local tangent space alignment(LTSA). The merit of the TM method is that the bearing fault-induced transients extracted contain low level of in-band noise without optimization of the VMD parameters. However, the determination of the neighborhood size of the LTSA is time-consuming, and the extracted fault-induced transients may have the problem of asymmetry in the up-and-down direction. This paper aims to improve the efficiency and waveform symmetry of the TM method.Specifically, the multi-bandwidth modes consisting of the fault-related modes with different bandwidths are first obtained by repeating the recycling VMD(RVMD) method with different bandwidth balance parameters. Then, the LTSA algorithm is performed on the multi-bandwidth modes to extract their inherent manifold structure, in which the natural nearest neighbor(Triple N, TN) algorithm is adopted to efficiently and reasonably select the neighbors of each data point in the multi-bandwidth modes. Finally, a weight-based feature compensation strategy is designed to synthesize the low-dimensional manifold features to alleviate the asymmetry problem, resulting in a symmetric TM feature that can represent the real fault transient components. The major contribution of the improved TM method for bearing fault diagnosis is that the pure fault-induced transients are extracted efficiently and are symmetrical as the real. One simulation analysis and two experimental applications in bearing fault diagnosis validate the enhanced performance of the improved TM method over the traditional methods. This research proposes a bearing fault diagnosis method which has the advantages of high efficiency, good waveform symmetry and enhanced in-band noise removal capability.
基金supported by the National Natural Science Foundation of China(41330526)
文摘The spatial distributions of lead, arsenic, and copper (Pb, As, and Cu, respectively) in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica, are presented. The mean concentrations of Pb, As, and Cu are 1.04±1.56 pg/g, 0.39±0.08 pg/g, and 11.2±14.4 pg/g, respectively. It is estimated that anthropogenic contributions are dominant for Pb, As, and Cu. Spatially, Pb concentrations show an exponentially decreasing trend from the coast inland, while a moderate decreasing trend is observed for Cu concentrations in the coastal area (below 2,000 m above sea level (a.s.1.)). In the intermediate area (2,000-3,000 m a.s.1.), the concentrations and enrichment factors of all these elements show high variability due to the complicated characteristics of climate and environment. On the inland plateau (above 3,000 m a.s.1.), the high concentrations of As and Pb are induced by high deposition efficiency, the existence of polar stratospheric precipitation, and the different fraction deposition to East Antarctica. The extremely high concentrations with maximum values of 9.59 pg/g and 69.9 pg/g for Pb and Cu, respectively, are suggested to result mainly from local human activities at the station. Our results suggest that source, transport pathway, and deposition pattern, rather than distance from the coast or altitude, lead to the spatial distributions of Pb, As, and Cu; and it is further confirmed by spatial variations of the three metals deposited over the whole continent of Antarctica.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4200302)the National Natural Science Foundation of China(Grant Nos.52325307,52203233,22075194,and 52273188)+2 种基金Department of Science and Technology of Jiangsu Province(No.BE2022023)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Collaborative Innovation Center of Suzhou Nano Science and Technology,and the Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function,Soochow University,Undergraduate Training Programfor Innovation and Entrepreneurship,Soochow University(No.202310285036Z).
文摘Monolithic perovskite/organic tandem solar cells(TsCs)have gained significant attention due to their easy device integration and the potential to surpass the Shockley-Queisser limit of single-junction solar cells.However,the surfaces of wide-bandgap perovskite films are densely populated with defects,leading to severe non-radiative recombination and energy loss.As a consequence,the power conversion efficiency(PCE)of perovskite/organic TSCs lags behind that of other TSC counterparts.To address these issues,we designed a functional ammonium salt,4-(2-hydroxyethyl)piperazin-1-ium iodide(Pzol),comprising a piperazine iodide and a terminated hydroxyl group,which was applied for post-treating the perovskite surface.Our findings reveal that Pzol reacts with and consumes residual PbX_(2)(X:I or Br)to form a 2D perovskite component,thereby eliminating Pb^(0)defects,while the terminated hydroxyl group in PZOI can also passivate uncoordinated Pb^(2+).Consequently,the shallow/deep-level defect densities of the 2D/3D perovskite film were significantly reduced,leading to an enhanced PCE of single-junction 2D/3D wide-bandgap perovskite solar cells to 18.18% with a reduced energy loss of 40 mev.Importantly,the corresponding perovskite/organic TSCs achieved a remarkable PCE of 24.05% with enhanced operational stability(T_(90)~500h).
基金the Natural Science Foundation of China(No.22105218).
文摘It is challenging to cooperatively improve the nonlinear optical(NLO)efficiency and the laser-induced damage threshold(LIDT).This work reports a novel IR NLO materials CsInP_(2)S_(7)(CIPS)designed by combination the strategies of alkali metals substitution and microscopic NLO units PS4 introduction based on AgGaS_(2).CIPS was composed of strongly distorted[InS_(6)]^(9-)octahedra and[P_(2)S_(7)]4-dimers constructed by corner-sharing[PS_(4)]^(3-),which increase the NLO efficiency and decrease thermal expansion anisotropy simultaneously.Compared with AgGaS_(2),CIPS exhibited strong phase matchable NLO response ca.1.1×AGS@2.1μm,high LIDT ca.20.8×AgGaS_(2),and IR transparency up to 15.3μm.Structural analysis and theoretical investigation confirmed that large SHG effect and ultrahigh LIDT of CIPS originated from the synergistic contribution of[InS_(6)]^(9-)octahedra and[P_(2)S_(7)]4-dimers.These results indicate that CIPS is a promising NLO candidate in the mid-IR region,and this study provides a new approach for developing potential NLO-LIDT compatible materials.
基金supported by the National Natural Science Foundation of China(Nos.U21A20312 and 21975162)the Natural Science Foundation of Guangdong(No.2020A1515010840)Shenzhen Science and Technology Program(Nos.JCYJ20200109105803806,RCYX20200714114535052,and SGDX20201103095802006).
文摘In electrocatalytic water splitting,low-cost dual-functional catalysts can not only reduce costs but also avoid cross-contamination of cathode and anode.However,the orderly aggregation of active sites for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)into a specific catalyst is very challenging.In this study,a Co/Fe_(3)O_(4)Janus heterojunction supported on carbon fiber paper(J-CoFe-CFP)is designed and successfully synthesized.Generally,Co-Fe oxides have preferable OER activity but weak HER activity.However,in J-CoFe-CFP,due to the intense and special electronic interaction of different substances(Co and Fe3O4)in the Janus heterogeneous interface,a huge number of tidy high-quality HER and OER active sites are uniformly distributed on the interface simultaneously,which endows the catalyst with both excellent HER and OER performance.In HER,the overpotential@10 mA·cm^(−2)(ηHER)is only 53.9 mV,and the Tafel slope is 43.7 mV·dec^(−1).In OER,theηis 272 mV,and the Tafel slope is 50.2 mV·dec^(−1),much lower than those of RuO_(2)/CFP.In the J-CoFe-CFP||J-CoFe-CFP two-electrode system,the required voltage is only 1.26 V at the beginning and 1.56 V@10 mA·cm^(−2),much lower than those of RuO_(2)/CFP||20%Pt/C/CFP.This work provides a Janus heterojunction pathway for bifunctional water electrolysis catalysts.
基金supported by Shenzhen Science and Technology Program (JCYJ20200109105803806, SGDX20201103095802006, RCYX20200714114535052,JCYJ20190808150001775,and CYJ20190808143007479)the National Natural Science Foundation of China (U21A20312 and 21975162)Guangdong Basic and Applied Basic Research Foundation (2022B1515120084)。
文摘合理设计铂纳米颗粒尺寸是制备高效氧还原电催化剂的关键.本工作中,我们借助静电纺丝和ZIF-8的双重限域作用合成了超细铂纳米颗粒锚定在多孔碳纳米纤维上的催化材料.低Pt负载(4.2 wt%)的Pt@PCNFs在碱性和酸性电解质中均表现出优异的氧还原反应活性,其质量活性分别为41和51 A gPt^(-1),分别是商业Pt/C催化剂相应值的8倍和10倍.在不同温度的碱性和酸性环境的计时安培试验和加速稳定性实验中, Pt@PCNFs的稳定性均优于Pt/C基准.该催化剂的优异性能可归因于小尺寸的Pt纳米颗粒、丰富多孔的纤维结构、Pt纳米颗粒与N掺杂碳纳米纤维之间的强金属载体相互作用以及碳壳层的保护作用.
基金supported by the National Natural Science Foundation of China (Grant Nos.52172406 and 51875376)the China Postdoctoral Science Foundation (Grant Nos.2022T150552 and 2021M702752)the Suzhou Prospective Research Program,China (Grant No.SYG202111)。
文摘As parameter independent yet simple techniques,the energy operator(EO)and its variants have received considerable attention in the field of bearing fault feature detection.However,the performances of these improved EO techniques are subjected to the limited number of EOs,and they cannot reflect the non-linearity of the machinery dynamic systems and affect the noise reduction.As a result,the fault-related transients strengthened by these improved EO techniques are still subject to contamination of strong noises.To address these issues,this paper presents a novel EO fusion strategy for enhancing the bearing fault feature nonlinearly and effectively.Specifically,the proposed strategy is conducted through the following three steps.First,a multi-dimensional information matrix(MDIM)is constructed by performing the higher order energy operator(HOEO)on the analysis signal iteratively.MDIM is regarded as the fusion source of the proposed strategy with the properties of improving the signal-to-interference ratio and suppressing the noise in the low-frequency region.Second,an enhanced manifold learning algorithm is performed on the normalized MDIM to extract the intrinsic manifolds correlated with the fault-related impulses.Third,the intrinsic manifolds are weighted to recover the fault-related transients.Simulation studies and experimental verifications confirm that the proposed strategy is more effective for enhancing the bearing fault feature than the existing methods,including HOEOs,the weighting HOEO fusion,the fast Kurtogram,and the empirical mode decomposition.
文摘Nonlinear optical(NLO)crystals are core materials in laser frequency-conversion technique,and the requirement on the laser wavelength varies from one application to another.Now,the commercial NLO crystals,e.g.,KDP,LBO,BBO,KTP,AgGaS_(2),ZnGeP_(2),et al.,have prevailed in ultraviolet(UV)/visible and near-/mid-infrared region for decades.
文摘Nonlinear optical(NLO)crystals can efficiently convert the frequency of common solid-state laser with fixed or limited wavelengths.Since the first observation of second-harmonic generation(SHG)phenomenon in the early 1960s,they have played an increasing role in the fields of laser spectra,precision measurements,and quantum information,as well as industrial laser processing,and so on.However,it is still challenging to rationally design and synthesize new NLO crystals.
基金financially supported by the National Natural Science Foundation of China (No.21575165)
文摘An electrochemical sensor for doxycycline hyclate(DC)detection with high sensitivity and good selectivity is reported.The sensor was fabricated by electro-polymerization of molecularly imprinted polymers(MIPs)in the presence of DC onto multi-walled carbon nanotubes modified glassy carbon electrode(MWCNTs/GCE).The MWCNTs can significantly increase the current response of the sensor,leading to enhanced sensitivity.The MIPs provide selective recognition sites for DC detection.The experimental parameters,such as the polymer monomer concentration,supporting electrolyte pH,the time for electro-polymerization and the incubation time of the sensor with DC were optimized.Under optimized experimental conditions,the sensor displayed a linear range of 0.05μmol/L-0.5μmol/L towards DC detection,with the detection limit of 1.3×10^-2μmol/L.The sensor was successfully applied for recovery test of DC in human serum samples.
基金supported by the National Natural Science Foundation of China(Nos.51705349,51875376,51875375)the China Postdoctoral Science Foundation(No.2019T120456)+4 种基金the National Key ResearchDevelopment Program of China(No.2018YFB2003303)the Natural Science Foundation for CollegesUniversities in Jiangsu Province(No.20KJB460006)Open Research Fund Program of Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles.The authors also would like to thank the Lab E026 in University of Ottawa for data collection.
文摘As critical components in modern aerospace productions,rolling element bearings(REBs)generally work under varying speed conditions,which brings great challenges to their operating health monitoring.Some novel time–frequency decomposition(TFD)algorithms are established recently to extract nonlinear features from the non-stationary signals effectively,which are promising for realizing fault diagnosis of REBs under varying speed conditions.However,numerous personal experiences must be incorporated and the anti-noise performance of these methods needs to be further enhanced.Given these issues,a synchronous chirp mode extraction(SCME)-based REB fault diagnosis method is proposed for the health monitoring of REBs under varying speed conditions in this study.It mainly consists of following two parts.(a)The shaft rotational frequency(SRF)is initially estimated from the low-frequency band of the vibration signal.Simultaneously,an adaptive refining strategy is incorporated to obtain a suitable bandwidth parameter.(b)A cycle-one-step estimation frame is constructed to extract synchronous modes from the envelope waveform of the vibration signal.Meanwhile,a synchronous mode spectrum(SMS)is generated using the information of the extracted synchronous modes,which is a novel REBs fault diagnosis technique with tacholess and resampling-free.In contrast to the current TFD algorithms,the proposed method needs fewer input parameters and owns a well anti-noise performance because there is no iterative optimization in the procedure of construction of SMS.As a result,the health conditions of REBs are evaluated by detecting the exhibited features in the SMS.Simulations and experiments are conducted to validate the effectiveness of the proposed method in terms of REB fault diagnosis.Analysis results demonstrate that the proposed method outperforms the current TFD algorithm and the conventional order tracking technique for fault diagnosis of REB under varying speed conditions.
基金National Key R&D Program of China(2018YFB1801304)State Key Laboratory of Advanced Optical Communication Systems and Networks(2019GZKF7)+1 种基金National Natural Science Foundation of China(61505061,61675083)Key Project of RD Program of Hubei Province(2017AAA046)
文摘We propose and experimentally demonstrate a novel physical layer encryption scheme for high-speed optical communication. A 10 Gb/s on-off keying signal is secretly transmitted over 100 km standard single-mode fiber.The intensity-modulated message is secured by the encryption mechanism, which is composed of an external noise source and an internal time-delayed feedback loop. The external noise serves as an entropy source with sufficient randomness. The feedback loop structure in the transmitter introduces a time-domain encryption key space, and a corresponding open-loop configuration at the receiver side is used for synchronization and decryption.Experiment results show the effectiveness of the proposed scheme. For a legitimate terminal, bit error rate below10-8 can be obtained. Decryption degradations with the mismatch of different hardware parameters are researched. The time delay in the feedback loop provides a sensitive encryption key. For other hardware parameters,the system is robust enough for synchronization. Meanwhile, the time-delay signature of the loop is able to be well concealed by the external noise. Moreover, the proposed scheme can support density wavelength division multiplexing transmission with a relatively simple structure. This work also provides a new concept to establish optical secure communication by combining a time-delayed feedback chaotic system and random noise.
基金This work was supported by the National Natural Science Foundation of China(No.41771512)the Dean’s Research Fund 2020/21(Project code:04626)of the Education University of Hong Kong.
文摘Iron-oxidizing strain(FeOB)and iron modified biochars have been shown arsenic(As)reme-diation ability in the environment.However,due to the complicated soil environment,few field experiment has been conducted.The study was conducted to investigate the potential of iron modified biochar(BC-FeOS)and biomineralization by a new found FeOB to remediate As-contaminated paddy field.Compared with the control,the As contents of G_(B)(BC-FeOS),G_(F)(FeOB),G_(FN)(FeOB and nitrogen fertilizer),G_(BF)(BC-FeOS and FeOB)and G_(BFN)(BC-FeOS,FeOB and nitrogen fertilizer)treatments in pore water decreased by 36.53%-80.03%and the microbial richness of iron-oxidizing bacteria in these treatments increased in soils at the rice maturation stage.The concentrations of available As of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) at the tillering stage were significantly decreased by 10.78%-55.48%.The concentrations of non-specifically absorbed and specifically absorbed As fractions of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) in soils were decreased and the amorphous and poorly crystalline hydrated Fe and Al oxidebound fraction was increased.Moreover,the As contents of G_(B),G_(F),G_(FN),G_(BF) and G_(BFN) in rice grains were significantly decreased(*P<0.05)and the total As contents of G_(FN),G_(BF) and G_(BFN) were lower than the standard limit of the National Standard for Food Safety(GB 2762-2017).Compared with the other treatments,G_(BFN) showed the greatest potential for the effective remediation of As-contaminated paddy fields.