Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of ...With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.展开更多
Plant litter will influence the bioavailability of heavy metals in sediments of wetlands used to treat acid mine drainage. To investigate the effect of plant litter on sediments in wetlands and define the comprehensiv...Plant litter will influence the bioavailability of heavy metals in sediments of wetlands used to treat acid mine drainage. To investigate the effect of plant litter on sediments in wetlands and define the comprehensive and continuous role of plant litter, different mass ratios(0%,5%, 20%) of litter were added into the sediments to study the influence of litter decomposition on the overlying water and sediments. The changes in pH, EC, Eh, Fe, and Mn of the overlying water and the organic matter in the sediments and the forms of Fe and Mn after 1, 7, 14, 21, and 28 days of litter decomposition were studied. The results indicated that litter decomposition increased the pH, EC, and reduced Eh of the overlying water. Litter decomposition promoted the release of Fe and Mn from the sediments into the overlying water and with the continuous decomposition of litter, the concentration of Fe and Mn in the overlying water declined. Litter decomposition increased the content of the organic matter in the sediment, and the forms of Fe and Mn indicated that litter decomposition could significantly affect the transformation of the forms of Fe and Mn.Reducible Fe was the main form in the sediments. Litter decomposition promoted the transformation of reducible Fe, the main form found in the sediments, intoexchangeable and oxidizable Fe, but had no effect on residual form. Exchangeable Mn was the main form in the sediments, and litter decomposition accelerated the transformation of reducible Mn, most commonly found in the sediments, into oxidizable Mn and had little influence on the exchangeable and residual forms.展开更多
Gilpinia wui Wang & Wei sp. nov. of Diprionidae is described from China. The species was ever mentioned as Gilpinia wui Xin, nom. nud. without description, figures and diagnosis, and the type was also not designat...Gilpinia wui Wang & Wei sp. nov. of Diprionidae is described from China. The species was ever mentioned as Gilpinia wui Xin, nom. nud. without description, figures and diagnosis, and the type was also not designated. The larvae of G. wui feed on Pinus tabulaeformis Carr. The new species is similar to G.massoniana G. Xiao, 1992 from China but differs in clypeus laterally yellow marked, the posterior femur yellowish, the angle formed by the dorsal line between the upper end of the second ctenidium and the lancet apex with the ventral line between the apex of the second serrula and the lancet apex about 25 degrees, the 6 th annulus clearly broader, the ventral apical margin of penis valve multitoothed and the larvae feeding on Pinus tabulaeformis.展开更多
This paper uses the daily precipitation observation data and Doppler weather radar observation data from 2017 observatories and regional automatic stations in Fujian, China from 2009 to 2015. The characteristics of fo...This paper uses the daily precipitation observation data and Doppler weather radar observation data from 2017 observatories and regional automatic stations in Fujian, China from 2009 to 2015. The characteristics of formation mode, organization mode, moving direction and duration of linear mesoscale convective system during non-typhoon continuous rainstorm in Fujian were analyzed. This paper gives the definition of linear mesoscale convective systems, trailing and parallel mesoscale convective systems. The above characteristics of the linear mesoscale convective system during the continuous heavy rain in Fujian differ greatly from the non-sustained heavy rain process: The linear mesoscale convective system in the continuous heavy rain in Fujian is mainly constructed later, and the trailing and parallel mesoscale convective system is conducive to the occurrence of continuous heavy rain in Fujian. The moving direction of the linear mesoscale convective system and convective monomer is mainly in the east direction, and the system duration is mostly 4 - 10 hours. The formation time of the monomer to form a linear convection time is mainly 1 - 3 hours, which is 2 hours earlier than the organization process of the general linear mesoscale convective system. The linear convective system formed to a dead time of an average of 5 hours, slightly longer than the general linear mesoscale convective system.展开更多
The clinical translation of nanomedicine is hindered by the low delivery efficiency, and consequently drug concentration in tumor sites falls short of the therapeutic effective range which leads to poor clinical outco...The clinical translation of nanomedicine is hindered by the low delivery efficiency, and consequently drug concentration in tumor sites falls short of the therapeutic effective range which leads to poor clinical outcomes. One important lesson learned from the development of antibody-drug-conjugates (ADCs) is that to achieve significant clinical benefits, extremely potent cytotoxic agents and cleavable linkers should be used. By encapsulating maytansinoid, AP3, which is 100-1,000 times more potent than most conventional small molecule anticancer drugs, in pH-sensitive acetalated dextran-polyethylene glycol (PEG)(ADP) nanocarriers, even with only 1% drug loading, we were able to eradicate tumors in 50% of tested animals with negligible side effects, while free AP3 only showed marginal efficacy and severe liver damages. This study suggests that besides improving the low efficiency of nano-delivery systems, the potency of drug to be delivered is also critical to the clinical outcomes of nanomedicine. Our results also showed that ADP nanoparticles (NPs) were able to expand the narrow therapeutic window of maytansinoids in a similar manner to the ADCs.展开更多
Aspergillus niger is an efficient cell factory for organic acids production,particularly l-malic acid,through genetic manipulation.However,the traditional method of collecting A.niger spores for inoculation is labor-i...Aspergillus niger is an efficient cell factory for organic acids production,particularly l-malic acid,through genetic manipulation.However,the traditional method of collecting A.niger spores for inoculation is labor-intensive and resource-consuming.In our study,we used the CRISPR-Cas9 system to replace the promoter of brlA,a key gene in Aspergillus conidiation,with a xylose-inducible promoter xylP in l-malic acid-producing A.niger strain RG0095,generating strain brlAxylP.When induced with xylose in submerged liquid culture,brlAxylP exhibited significant upregulation of conidiation-related genes.This induction allowed us to easily collect an abundance of brlAxylP spores(>7.1×106/mL)in liquid xylose medium.Significantly,the submerged conidiation approach preserves the substantial potential of A.niger as a foundational cellular platform for the biosynthesis of organic acids,including but not limited to l-malic acid.In summary,our study offers a simplified submerged conidiation strategy to streamline the preparation stage and reduce labor and material costs for industrial organic acid production using Aspergillus species.展开更多
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804399)the Special Funds for Basic Scientific Research at the Central University of South-Central University for Nationalities(Grant No.CZQ20018)Special Funds for Basic Scientific Research at Central Universities(Grant No.YZZ17005)。
文摘With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.
基金provided by the United Fund of Guizhou Province Government and National Natural Science Foundation of China (No. U1612442)the Natural and Science Project by the Education Department of Guizhou Province (Nos. KY2016011, GZZ201607, and ZDXK201611)
文摘Plant litter will influence the bioavailability of heavy metals in sediments of wetlands used to treat acid mine drainage. To investigate the effect of plant litter on sediments in wetlands and define the comprehensive and continuous role of plant litter, different mass ratios(0%,5%, 20%) of litter were added into the sediments to study the influence of litter decomposition on the overlying water and sediments. The changes in pH, EC, Eh, Fe, and Mn of the overlying water and the organic matter in the sediments and the forms of Fe and Mn after 1, 7, 14, 21, and 28 days of litter decomposition were studied. The results indicated that litter decomposition increased the pH, EC, and reduced Eh of the overlying water. Litter decomposition promoted the release of Fe and Mn from the sediments into the overlying water and with the continuous decomposition of litter, the concentration of Fe and Mn in the overlying water declined. Litter decomposition increased the content of the organic matter in the sediment, and the forms of Fe and Mn indicated that litter decomposition could significantly affect the transformation of the forms of Fe and Mn.Reducible Fe was the main form in the sediments. Litter decomposition promoted the transformation of reducible Fe, the main form found in the sediments, intoexchangeable and oxidizable Fe, but had no effect on residual form. Exchangeable Mn was the main form in the sediments, and litter decomposition accelerated the transformation of reducible Mn, most commonly found in the sediments, into oxidizable Mn and had little influence on the exchangeable and residual forms.
基金partly supported by the Hunan Provincial Innovation Foundation for Postgraduate(CX2017B398)the Scientific Innovation Fund for Graduates of Central South University of Forestry and Technology(CX2017A03)+2 种基金the National Natural Science Foundation of China(31501885,31672344)the Innovation Platform Project of Hunan Provincial Universities(15K150)the Natural Science Foundation of Zhejiang Province(LY18C040001)
文摘Gilpinia wui Wang & Wei sp. nov. of Diprionidae is described from China. The species was ever mentioned as Gilpinia wui Xin, nom. nud. without description, figures and diagnosis, and the type was also not designated. The larvae of G. wui feed on Pinus tabulaeformis Carr. The new species is similar to G.massoniana G. Xiao, 1992 from China but differs in clypeus laterally yellow marked, the posterior femur yellowish, the angle formed by the dorsal line between the upper end of the second ctenidium and the lancet apex with the ventral line between the apex of the second serrula and the lancet apex about 25 degrees, the 6 th annulus clearly broader, the ventral apical margin of penis valve multitoothed and the larvae feeding on Pinus tabulaeformis.
文摘This paper uses the daily precipitation observation data and Doppler weather radar observation data from 2017 observatories and regional automatic stations in Fujian, China from 2009 to 2015. The characteristics of formation mode, organization mode, moving direction and duration of linear mesoscale convective system during non-typhoon continuous rainstorm in Fujian were analyzed. This paper gives the definition of linear mesoscale convective systems, trailing and parallel mesoscale convective systems. The above characteristics of the linear mesoscale convective system during the continuous heavy rain in Fujian differ greatly from the non-sustained heavy rain process: The linear mesoscale convective system in the continuous heavy rain in Fujian is mainly constructed later, and the trailing and parallel mesoscale convective system is conducive to the occurrence of continuous heavy rain in Fujian. The moving direction of the linear mesoscale convective system and convective monomer is mainly in the east direction, and the system duration is mostly 4 - 10 hours. The formation time of the monomer to form a linear convection time is mainly 1 - 3 hours, which is 2 hours earlier than the organization process of the general linear mesoscale convective system. The linear convective system formed to a dead time of an average of 5 hours, slightly longer than the general linear mesoscale convective system.
文摘The clinical translation of nanomedicine is hindered by the low delivery efficiency, and consequently drug concentration in tumor sites falls short of the therapeutic effective range which leads to poor clinical outcomes. One important lesson learned from the development of antibody-drug-conjugates (ADCs) is that to achieve significant clinical benefits, extremely potent cytotoxic agents and cleavable linkers should be used. By encapsulating maytansinoid, AP3, which is 100-1,000 times more potent than most conventional small molecule anticancer drugs, in pH-sensitive acetalated dextran-polyethylene glycol (PEG)(ADP) nanocarriers, even with only 1% drug loading, we were able to eradicate tumors in 50% of tested animals with negligible side effects, while free AP3 only showed marginal efficacy and severe liver damages. This study suggests that besides improving the low efficiency of nano-delivery systems, the potency of drug to be delivered is also critical to the clinical outcomes of nanomedicine. Our results also showed that ADP nanoparticles (NPs) were able to expand the narrow therapeutic window of maytansinoids in a similar manner to the ADCs.
基金This work was financially supported by the National Key Research and Development Program of China(2021YFC2104300)the National Natural Science Foundation of China(32200055 and 22378210)the Natural Science Foundation of Jiangsu Province(BK20202002).
文摘Aspergillus niger is an efficient cell factory for organic acids production,particularly l-malic acid,through genetic manipulation.However,the traditional method of collecting A.niger spores for inoculation is labor-intensive and resource-consuming.In our study,we used the CRISPR-Cas9 system to replace the promoter of brlA,a key gene in Aspergillus conidiation,with a xylose-inducible promoter xylP in l-malic acid-producing A.niger strain RG0095,generating strain brlAxylP.When induced with xylose in submerged liquid culture,brlAxylP exhibited significant upregulation of conidiation-related genes.This induction allowed us to easily collect an abundance of brlAxylP spores(>7.1×106/mL)in liquid xylose medium.Significantly,the submerged conidiation approach preserves the substantial potential of A.niger as a foundational cellular platform for the biosynthesis of organic acids,including but not limited to l-malic acid.In summary,our study offers a simplified submerged conidiation strategy to streamline the preparation stage and reduce labor and material costs for industrial organic acid production using Aspergillus species.