期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自适应量子储层计算与多任务学习
1
作者 夏威 邹杰 +5 位作者 邱型泽 陈锋 朱兵 李春贺 邓东灵 李晓鹏 《Science Bulletin》 SCIE EI CAS CSCD 2023年第20期2321-2329,M0004,共10页
随着实验技术的快速发展,含噪声的中等规模量子(NISQ)设备的可编程性越来越高,人们能够更好地利用量子计算的优势.本文利用可编程的NISQ设备的复杂动力学来进行量子储层计算,并通过使用遗传算法来优化该过程.令人惊讶的是,单个自适应量... 随着实验技术的快速发展,含噪声的中等规模量子(NISQ)设备的可编程性越来越高,人们能够更好地利用量子计算的优势.本文利用可编程的NISQ设备的复杂动力学来进行量子储层计算,并通过使用遗传算法来优化该过程.令人惊讶的是,单个自适应量子储层可以同时学习多个任务,包括振荡型基因网络、混沌型基因网络和分数阶蔡氏电路.通过自适应量子储层计算,这些任务的学习性能得到了显著提升,远远超过了经典储层计算的表现.此外,本文还将自适应量子储层计算应用于外汇市场,相较于经典储层计算,它能更准确地捕捉汇率的随机演化.通过与经典储层计算的比较,本文突出了量子相干性在量子储层计算中的重要性,并验证了量子相干性是实现卓越学习性能的关键.研究结果表明,自适应量子储层计算能够充分发挥NISQ设备的量子计算能力,并在通用人工智能的发展方面具有巨大潜力. 展开更多
关键词 基因网络 多任务学习 量子计算 量子相干性 NIS 遗传算法 蔡氏电路 外汇市场
原文传递
The reservoir learning power across quantum many-body localization transition
2
作者 Wei Xia Jie Zou +1 位作者 xingze qiu Xiaopeng Li 《Frontiers of physics》 SCIE CSCD 2022年第3期91-99,共9页
Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range ... Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory, which can be attributed to the emergent local integrals of motion. On the other hand, MBL phase does not provide sufficient nonlinearity in learning highly-nonlinear time sequences, which we show in a parity check task. This is reversed in the quantum ergodic phase, which provides sufficient nonlinearity but compromises memory capacity. In a complex learning task of Mackey–Glass prediction that requires both sufficient memory capacity and nonlinearity, we find optimal learning performance near the MBL-to-ergodic transition. This leads to a guiding principle of quantum reservoir engineering at the edge of quantum ergodicity reaching optimal learning power for generic complex reservoir learning tasks. Our theoretical finding can be tested with near-term NISQ quantum devices. 展开更多
关键词 quantum reservoir computing many-body localization quantum ergodic edge of quantum ergodicity optimal learning power
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部