期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Critical Role for γCaMKII in Decoding NMDA Signaling to Regulate AMPA Receptors in Putative Inhibitory Interneurons 被引量:1
1
作者 xingzhi he Yang Wang +5 位作者 Guangjun Zhou Jing Yang Jiarui Li Tao Li Hailan Hu Huan Ma 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第8期916-926,共11页
CaMKII is essential for long-term potentiation(LTP),a process in which synaptic strength is increased following the acquisition of information.Among the four CaMKII isoforms,γCaMKII is the one that mediates the LTP o... CaMKII is essential for long-term potentiation(LTP),a process in which synaptic strength is increased following the acquisition of information.Among the four CaMKII isoforms,γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons(LTPE→I).However,the molecular mechanism underlying howγCaMKII mediates LTPE→I remains unclear.Here,we show thatγCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10–30 Hz range.Following stimulation,γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95.Knocking downγCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors(AMPARs)in putative inhibitory interneurons,which are restored by overexpression ofγCaMKII but not its kinase-dead form.Taken together,these data suggest thatγCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons. 展开更多
关键词 Synaptic plasticity LTP Inhibitory interneurons γCaMKII AMPAR NMDAR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部