期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research progress in failure mechanisms and electrolyte modification of high-voltage nickel-rich layered oxide-based lithium metal batteries
1
作者 Jiandong Liu xinhong hu +3 位作者 Shihan Qi Yurong Ren Yong Li Jianmin Ma 《InfoMat》 SCIE CSCD 2024年第2期57-75,共19页
High-voltage nickel(Ni)-rich layered oxide-based lithium metal batteries(LMBs)exhibit a great potential in advanced batteries due to the ultra-high energy density.However,it is still necessary to deal with the challen... High-voltage nickel(Ni)-rich layered oxide-based lithium metal batteries(LMBs)exhibit a great potential in advanced batteries due to the ultra-high energy density.However,it is still necessary to deal with the challenges in poor cyclic and thermal stability before realizing practical application where cycling life is considered.Among many improved strategies,mechanical and chemical stability for the electrode electrolyte interface plays a key role in addressing these challenges.Therefore,extensive effort has been made to address the challenges of electrode-electrolyte interface.In this progress,the failure mechanism of Ni-rich cathode,lithium metal anode and electrolytes are reviewed,and the latest breakthrough in stabilizing electrode-electrolyte interface is also summarized.Finally,the challenges and future research directions of Ni-rich LMBs are put forward. 展开更多
关键词 electrode-electrolyte interface electrolyte modification failure mechanisms high voltage lithium metal anode nickel-rich layered oxide cathode
原文传递
通过电解液添加剂构筑富含LiF/Li_(2)CO_(3)异质结构的电极-电解质界面以实现4.5V锂金属电池的稳定循环 被引量:1
2
作者 胡欣宏 李永 +3 位作者 刘建东 王中升 白莹 马建民 《Science Bulletin》 SCIE EI CAS CSCD 2023年第12期1295-1305,M0004,共12页
高压Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)电池的循环性能取决于电极和电解质之间的界面稳定性.然而,在高电压下实现它们是具有挑战性的本文以五氟苯乙烯(PFBE)为添加剂,通过电解液工程稳定了4.5VLi||NCM811电池.添加剂PFBE有... 高压Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)电池的循环性能取决于电极和电解质之间的界面稳定性.然而,在高电压下实现它们是具有挑战性的本文以五氟苯乙烯(PFBE)为添加剂,通过电解液工程稳定了4.5VLi||NCM811电池.添加剂PFBE有助于在NCM811阴极和锂金属阳极表面形成高导锂和机械坚固的富含无机组分LiF/Li_(2)CO_(3)的异质结构界面.这种电极-电解质界面(EEIs)明显缓解了富镍层状阴极中不可逆相变、应力积累引起的微裂纹和过渡金属溶解.同时,有效地控制了锂金属阳极表面锂枝晶的生长,结果表明,4.5VLi||NCM811电池在0.5C(100mAg)下循环600次后,容量保持率为61.27%.此外,在含有这种电解质添加剂中循环的Li||NCM811软包电池可以实现稳定的、高达~485Whkg^(-1)的能量密度. 展开更多
关键词 电解液添加剂 阳极表面 异质结构 界面稳定性 电解质添加剂 能量密度 无机组分 五氟苯
原文传递
Weakly solvated electrolytes conducive to uniform lithium deposition
3
作者 xinhong hu Jiandong Liu +3 位作者 Yaxiong Yang Yanxia Liu Qibing Wu Jianmin Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期4-6,共3页
Rechargeable lithium metal batteries(LMBs)meet the demands of high-energy applications in electric vehicles and truck transportation[1-4].Yet,the low coulombic efficiency(CE)hinders the widespread application of Li an... Rechargeable lithium metal batteries(LMBs)meet the demands of high-energy applications in electric vehicles and truck transportation[1-4].Yet,the low coulombic efficiency(CE)hinders the widespread application of Li anode,which is closely related to the electrolytes[5-7].The CE of traditional electrolytes for Li anodes is closely related to the speciation of the plated Li during cycling,where fluorinated solvents with weakly solvated Li+usually exhibit larger Li deposition particles with higher CE[8,9].But the relationship between the morphological difference and CE in different electrolytes is less studied[10,11].There are three relationships between the deposition kinetics of interface Li and the cycling of the battery,no correlation,positive correlation[12,13],and negative correlation[14,15]have been reported on active Li anodes,which neglects the reactivity of Li metal in kinetics.Solid electrolyte interphase(SEl)was formed by the electrolytes reacting with Li,and Li deposition can occur on the Li/SEl interface or the fresh Li/electrolyte interface[16,17].Each pathway has different deposition kinetics.Therefore,in order to understand the relationship between electrolyte kinetics and lithium deposition morphology,it is important to solve the kinetics of the two ways in the electrolyte. 展开更多
关键词 BATTERY LITHIUM ELECTROLYTE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部