In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as...In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as lubricant additives.By using the benefit of the synergistic effect between MoS_(2) and carbon nanomaterials(CNMs),these nanocomposites can be well dispersed in polyalkylene glycol(PAG)base oil and show superior stability compared with pure MoS_(2) NPs.Moreover,the dispersions of MoS_(2)@CNT,MoS_(2)@Gr,and MoS_(2)@C60 added in PAG have noticeably improved friction reducing and antiwear(AW)behaviors at elevated temperature for comparison with that of PAG and PAG containing CNT,Gr,C60,and M0S2 NPs,respectively.The enhanced lubricating properties of these nanocomposites were also elucidated by exploring the tribofilm formed on the disc.展开更多
Despite excellent tribological behaviors of ionic liquids (ILs) as lubricating oils, their friction-reducing and anti-wear properties must be improved when they are used under severe conditions. There are only a few r...Despite excellent tribological behaviors of ionic liquids (ILs) as lubricating oils, their friction-reducing and anti-wear properties must be improved when they are used under severe conditions. There are only a few reports exploring additives for ILs. Here, MoS2 and WS2 quantum dots (QDs, with particle size less than 10 nm) are prepared via a facile green technique, and they are dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm]PF6), forming homogeneous dispersions exhibiting long-term stabilities. Tribological test results indicate that the addition of MoS2 and WS2 QDs in the IL can significantly enhance the friction-reducing and anti-wear abilities of the neat IL under a constant load of 500 N and a temperature of 150 °C. The exceptional tribological properties of these additives in the IL are ascribed to the formation of protective films, which are produced not only by the physical absorption of MoS2 and WS2 QDs at the steel/steel contact surfaces, but also by the tribochemical reaction between MoS2 or WS2 and the iron atoms/iron oxide species.展开更多
基金supported by the National Key Research and Development Program of China(2018YFB2000601)and National Natural Science Foundation of China(Nos.51875553 and 51775536).
文摘In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as lubricant additives.By using the benefit of the synergistic effect between MoS_(2) and carbon nanomaterials(CNMs),these nanocomposites can be well dispersed in polyalkylene glycol(PAG)base oil and show superior stability compared with pure MoS_(2) NPs.Moreover,the dispersions of MoS_(2)@CNT,MoS_(2)@Gr,and MoS_(2)@C60 added in PAG have noticeably improved friction reducing and antiwear(AW)behaviors at elevated temperature for comparison with that of PAG and PAG containing CNT,Gr,C60,and M0S2 NPs,respectively.The enhanced lubricating properties of these nanocomposites were also elucidated by exploring the tribofilm formed on the disc.
基金The authors are thankful for financial support of this work by National Key Research and Development Program of China(No.2018YFBO703802)National NaturalScienceFoundationofChina(Nos.NSFC51875553 and 51775536).
文摘Despite excellent tribological behaviors of ionic liquids (ILs) as lubricating oils, their friction-reducing and anti-wear properties must be improved when they are used under severe conditions. There are only a few reports exploring additives for ILs. Here, MoS2 and WS2 quantum dots (QDs, with particle size less than 10 nm) are prepared via a facile green technique, and they are dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm]PF6), forming homogeneous dispersions exhibiting long-term stabilities. Tribological test results indicate that the addition of MoS2 and WS2 QDs in the IL can significantly enhance the friction-reducing and anti-wear abilities of the neat IL under a constant load of 500 N and a temperature of 150 °C. The exceptional tribological properties of these additives in the IL are ascribed to the formation of protective films, which are produced not only by the physical absorption of MoS2 and WS2 QDs at the steel/steel contact surfaces, but also by the tribochemical reaction between MoS2 or WS2 and the iron atoms/iron oxide species.