Sunlight-driven activation of molecular oxygen(O_(2))for organic oxidation reactions offers an appealing strategy to cut down the reliance on fossil fuels in chemical industry,yet it remains a great challenge to simul...Sunlight-driven activation of molecular oxygen(O_(2))for organic oxidation reactions offers an appealing strategy to cut down the reliance on fossil fuels in chemical industry,yet it remains a great challenge to simultaneously tailor the charge kinetics and promote reactant chemisorption on semiconductor catalysts for enhanced photocatalytic performance.Herein,we report iron sites immobilized on defective BiOBr nanosheets as an efficient and selective photocatalyst for activation of O_(2) to singlet oxygen(^(1)O_(2)).These Fe^(3+) species anchored by oxygen vacancies can not only facilitate the separation and migration of photogenerated charge carrier,but also serve as active sites for effective adsorption of 02.Moreover,low-temperature phosphorescence spectra combined with X-ray photoelectron spectroscopy(XPS)and electronic paramagnetic resonance(EPR)spectra under illumination reveal that the Fe species can boost the quantum yield of excited triplet state and accelerate the energy transfer from excited triplet state to adsorbed O2 via a chemical loop of Fe^(3+)/Fe^(2+),thereby achieving highly efficient and selective generation of ^(1)O_(2).As a result,the versatile iron sites on defective BiOBr nanosheets contributes to near-unity conversion rate and selectivity in both aerobic oxidative coupling of amines to imines and sulfoxidation of organic sulfides.This work highlights the significant role of metal sites anchored on semiconductors in regulating the charge/energy transfer during the heterogeneous photocatalytic process,and provides a new angle for designing high-performance photocatalysts.展开更多
基金supported by the National Key R&D Program of China(No.2017YFA0700104)the National Natural Science Foundation of China(Nos.21905204,21931007,and 21790052)111 Project of China(No.D17003).
文摘Sunlight-driven activation of molecular oxygen(O_(2))for organic oxidation reactions offers an appealing strategy to cut down the reliance on fossil fuels in chemical industry,yet it remains a great challenge to simultaneously tailor the charge kinetics and promote reactant chemisorption on semiconductor catalysts for enhanced photocatalytic performance.Herein,we report iron sites immobilized on defective BiOBr nanosheets as an efficient and selective photocatalyst for activation of O_(2) to singlet oxygen(^(1)O_(2)).These Fe^(3+) species anchored by oxygen vacancies can not only facilitate the separation and migration of photogenerated charge carrier,but also serve as active sites for effective adsorption of 02.Moreover,low-temperature phosphorescence spectra combined with X-ray photoelectron spectroscopy(XPS)and electronic paramagnetic resonance(EPR)spectra under illumination reveal that the Fe species can boost the quantum yield of excited triplet state and accelerate the energy transfer from excited triplet state to adsorbed O2 via a chemical loop of Fe^(3+)/Fe^(2+),thereby achieving highly efficient and selective generation of ^(1)O_(2).As a result,the versatile iron sites on defective BiOBr nanosheets contributes to near-unity conversion rate and selectivity in both aerobic oxidative coupling of amines to imines and sulfoxidation of organic sulfides.This work highlights the significant role of metal sites anchored on semiconductors in regulating the charge/energy transfer during the heterogeneous photocatalytic process,and provides a new angle for designing high-performance photocatalysts.