In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessi...In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessing the degradation of different organic pollutants under visible-light irradiation. The composite 3%-AgVO3/MoS 2 catalyst demonstrated a significantly enhanced photocatalytic activity compared to the pure compounds(AgVO3 and MoS2). The reason behind the excellent photocatalytic performance was the modification of MoS 2 by AgVO3 to facilitate O2 adsorption/activation. In addition, the composite catalyst facilitates the two-electron oxygen reduction reaction whereby H2O2 is generated on the surface of MoS 2 to produce additional reactive oxygen species(ROSs). ESR coupled with the POPHA fluorescence detection method and a free radical capture experiment were used to elucidate the mechanism of formation of the ROSs, including ·OH, ·O2- and H2O2. Furthermore, the generation of additional ROSs could accelerate electron consumption, leaving behind more holes for the oxidation of organic pollutants. A possible photocatalytic mechanism of the composite is also discussed.展开更多
基金supported by the National Natural Science Foundation of China(21706104)the Natural Science Foundation of Jiangsu Province(BK20150484)+1 种基金the China Postdoctoral Science Foundation(2015M570416)the financial support of the Research Foundation of Jiangsu University,China(14JDG148)~~
文摘In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessing the degradation of different organic pollutants under visible-light irradiation. The composite 3%-AgVO3/MoS 2 catalyst demonstrated a significantly enhanced photocatalytic activity compared to the pure compounds(AgVO3 and MoS2). The reason behind the excellent photocatalytic performance was the modification of MoS 2 by AgVO3 to facilitate O2 adsorption/activation. In addition, the composite catalyst facilitates the two-electron oxygen reduction reaction whereby H2O2 is generated on the surface of MoS 2 to produce additional reactive oxygen species(ROSs). ESR coupled with the POPHA fluorescence detection method and a free radical capture experiment were used to elucidate the mechanism of formation of the ROSs, including ·OH, ·O2- and H2O2. Furthermore, the generation of additional ROSs could accelerate electron consumption, leaving behind more holes for the oxidation of organic pollutants. A possible photocatalytic mechanism of the composite is also discussed.