期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Unknown system dynamics estimator-based impedance control for lower limb exoskeleton with enhanced performance
1
作者 Wenhao Zhang Peng Song +3 位作者 Mingying Wu Qiang Li xinmin mo Pingxin Ji 《Control Theory and Technology》 EI CSCD 2024年第1期56-68,共13页
In this article, an unknown system dynamics estimator-based impedance control method is proposed for the lower limb exoskeleton to stimulate the tracking flexibility with the terminal target position when suffering pa... In this article, an unknown system dynamics estimator-based impedance control method is proposed for the lower limb exoskeleton to stimulate the tracking flexibility with the terminal target position when suffering parametric inaccuracies and unexpected disturbances. To reinforce the robust performance, via constructing the filtering operation-based dynamic relation, i.e., invariant manifold, the unknown system dynamics estimators are employed to maintain the accurate perturbation identification in both the hip and knee subsystem. Besides, a funnel control technique is designed to govern the convergence process within a minor overshoot and a higher steady-state precision. Meanwhile, an interactive complaint result can be obtained with the aid of the impedance control, where the prescribed terminal trajectory can be adjusted into the interaction variable-based target position by the force–position mapping, revealing the dynamic influence between the impedance coefficient (stiffness and damping) and the adjusted position magnitude. A sufficient stability analysis verifies the ultimately uniformly bounded results of all the error signals, and even the angle errors can be regulated within the predefined funnel boundary in the whole convergence. Finally, some simulations are provided to demonstrate the validity and superiority including the enhanced interaction flexibility and robustness. 展开更多
关键词 Trajectory tracking Invariant manifold Funnel control Impedance control Lower limb exoskeleton
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部