This article examines the pathway to digital transformation and upgrading in undergraduate institutions,using the civil engineering program at Chongqing Three Gorges University as a case study,focusing on six key area...This article examines the pathway to digital transformation and upgrading in undergraduate institutions,using the civil engineering program at Chongqing Three Gorges University as a case study,focusing on six key areas:developing a high-quality digital talent training program for civil engineering;assembling diverse resources to create a digital,multi-scenario open learning environment that encompasses teaching,research,and practical training for civil engineering undergraduates;piloting innovative digital teaching models for civil engineering undergraduates;crafting a new model for digital resource provision,utilizing self-developed and specialized resources;devising assessment methods and ongoing improvement strategies based on the achievement of students’digital competencies;and devising a new,three-dimensional,multi-modal teaching evaluation system through intelligent data capture and analysis.展开更多
微生物细胞工厂是合成生物学的重要研究方向之一.本文以微生物细胞工厂的产业应用为需求牵引,从物质代谢和能量代谢两方面系统阐述了细胞工厂的合成代谢调控机制,为高效细胞工厂创建奠定了理论基础.本团队在物质代谢方面,建立了新酶元...微生物细胞工厂是合成生物学的重要研究方向之一.本文以微生物细胞工厂的产业应用为需求牵引,从物质代谢和能量代谢两方面系统阐述了细胞工厂的合成代谢调控机制,为高效细胞工厂创建奠定了理论基础.本团队在物质代谢方面,建立了新酶元件挖掘技术平台,完成了一系列三萜化合物的合成途径解析;开发了染色体多基因文库调控、糖基化酶碱基编辑器(glycosylase base editor, GBE)等途径精准调控使能技术,完成一系列化学品合成途径限速步骤的鉴定,解决了元件与合成途径的适配问题.在能量代谢方面,设计创建了4种葡萄糖新型能量代谢模式,解决了合成途径还原力供给与需求不平衡的问题.在此基础上,创建出一系列微生物细胞工厂, 14个化学品完成技术转让,其中4个化学品实现万吨级产业化,支撑一家企业在科创板上市,推动了微生物细胞工厂的产业应用.最后,对未来微生物细胞工厂的研究进行了展望.展开更多
Glucose and xylose are two major components of lignocellulose.Simultaneous consumption of glucose and xylose is critical for engineered microorganisms to produce fuels and chemicals from lignocellulosic biomass.Althou...Glucose and xylose are two major components of lignocellulose.Simultaneous consumption of glucose and xylose is critical for engineered microorganisms to produce fuels and chemicals from lignocellulosic biomass.Although many production limitations have been resolved,glucose‐induced inhibition of xylose transport remains a challenge.In this study,a cell growthbased screening strategy was designed to identify xylose transporters uninhibited by glucose.The glucose pathway was genetically blocked in Escherichia coli so that glucose functions only as an inhibitor and cells need xylose as the carbon source for survival.Through adaptive evolution,omics analysis and reverse metabolic engineering,a new phosphoenolpyruvate:carbohydrate phosphotransferase system(PTS)galactitol transporter(GalABC,encoded by EcolC_1640,EcolC_1641,and EcolC_1642 genes)that is not inhibited by glucose was identified.Inactivation of adenylate cyclase led to increased expression of the EcolC_1642 gene,and a point mutation in gene EcolC_1642(N13S)further enhanced xylose transport.During the second round of gene mining,AraE and a new ABC transporter(AraFGH)of xylose were identified.A point mutation in the transcription regulator araC(L156I)caused increased expression of araE and araFGH genes without arabinose induction,and a point mutation in araE(D223Y)further enhanced xylose transport.These newly identified xylose transporters can support the simultaneous consumption of glucose and xylose and have potential use in producing chemicals from lignocellulose.展开更多
基金Chongqing Higher Education Teaching Reform Research Key Project(Project number:222128)Chongqing Three Gorges University Higher Education Research Project(Project number:JGSZH2203)+3 种基金Chongqing Education Science Planning Project(Project number:K23ZG2120245,K22ZS212737,K23YD2120100)Chongqing Three Gorges University First-Class Undergraduate Course“Principles of Steel Structures”Chongqing Three Gorges University Course Ideological and Political Demonstration Course“Principles of Steel Structures”Chongqing First-Class Undergraduate Course“Principles of Steel Structures”。
文摘This article examines the pathway to digital transformation and upgrading in undergraduate institutions,using the civil engineering program at Chongqing Three Gorges University as a case study,focusing on six key areas:developing a high-quality digital talent training program for civil engineering;assembling diverse resources to create a digital,multi-scenario open learning environment that encompasses teaching,research,and practical training for civil engineering undergraduates;piloting innovative digital teaching models for civil engineering undergraduates;crafting a new model for digital resource provision,utilizing self-developed and specialized resources;devising assessment methods and ongoing improvement strategies based on the achievement of students’digital competencies;and devising a new,three-dimensional,multi-modal teaching evaluation system through intelligent data capture and analysis.
文摘微生物细胞工厂是合成生物学的重要研究方向之一.本文以微生物细胞工厂的产业应用为需求牵引,从物质代谢和能量代谢两方面系统阐述了细胞工厂的合成代谢调控机制,为高效细胞工厂创建奠定了理论基础.本团队在物质代谢方面,建立了新酶元件挖掘技术平台,完成了一系列三萜化合物的合成途径解析;开发了染色体多基因文库调控、糖基化酶碱基编辑器(glycosylase base editor, GBE)等途径精准调控使能技术,完成一系列化学品合成途径限速步骤的鉴定,解决了元件与合成途径的适配问题.在能量代谢方面,设计创建了4种葡萄糖新型能量代谢模式,解决了合成途径还原力供给与需求不平衡的问题.在此基础上,创建出一系列微生物细胞工厂, 14个化学品完成技术转让,其中4个化学品实现万吨级产业化,支撑一家企业在科创板上市,推动了微生物细胞工厂的产业应用.最后,对未来微生物细胞工厂的研究进行了展望.
基金supported by grants from National Key R&D Program of China(2019YFA0904900)National Natural Science Foundation of China(31870058).
文摘Glucose and xylose are two major components of lignocellulose.Simultaneous consumption of glucose and xylose is critical for engineered microorganisms to produce fuels and chemicals from lignocellulosic biomass.Although many production limitations have been resolved,glucose‐induced inhibition of xylose transport remains a challenge.In this study,a cell growthbased screening strategy was designed to identify xylose transporters uninhibited by glucose.The glucose pathway was genetically blocked in Escherichia coli so that glucose functions only as an inhibitor and cells need xylose as the carbon source for survival.Through adaptive evolution,omics analysis and reverse metabolic engineering,a new phosphoenolpyruvate:carbohydrate phosphotransferase system(PTS)galactitol transporter(GalABC,encoded by EcolC_1640,EcolC_1641,and EcolC_1642 genes)that is not inhibited by glucose was identified.Inactivation of adenylate cyclase led to increased expression of the EcolC_1642 gene,and a point mutation in gene EcolC_1642(N13S)further enhanced xylose transport.During the second round of gene mining,AraE and a new ABC transporter(AraFGH)of xylose were identified.A point mutation in the transcription regulator araC(L156I)caused increased expression of araE and araFGH genes without arabinose induction,and a point mutation in araE(D223Y)further enhanced xylose transport.These newly identified xylose transporters can support the simultaneous consumption of glucose and xylose and have potential use in producing chemicals from lignocellulose.