Many genetic loci for wheat plant height(PH) have been reported, and 26 dwarfing genes have been catalogued. To identify major and stable genetic loci for PH, here we thoroughly summarized these functionally or geneti...Many genetic loci for wheat plant height(PH) have been reported, and 26 dwarfing genes have been catalogued. To identify major and stable genetic loci for PH, here we thoroughly summarized these functionally or genetic verified dwarfing loci from QTL linkage analysis and genome-wide association study published from 2003 to 2022. A total of 332 QTL, 270 GWAS loci and 83 genes for PH were integrated onto chromosomes according to their locations in the IWGSC RefSeq v2.1 and 65 QTL-rich clusters(QRC) were defined. Candidate genes in each QRC were predicted based on IWGSC Annotation v2.1 and the information on functional validation of homologous genes in other species. A total of 38 candidate genes were predicted for 65 QRC including three GA2ox genes in QRC-4B-IV, QRC-5A-VIII and QRC-6A-II(Rht24) as well as GA 20-oxidase 2(TaSD1-3A) in QRC-3A-IV. These outcomes lay concrete foundations for mapbased cloning of wheat dwarfing genes and application in breeding.展开更多
基金funded by the National Natural Science Foundation of China (32101733)Shandong Provincial Natural Science Foundation (ZR202103020229)+1 种基金the High-Level Talents Project of Qingdao Agricultural University (663/1122023)National Natural Science Foundation of China Regional Innovation and Development Joint Fund Project (U22A20457)。
文摘Many genetic loci for wheat plant height(PH) have been reported, and 26 dwarfing genes have been catalogued. To identify major and stable genetic loci for PH, here we thoroughly summarized these functionally or genetic verified dwarfing loci from QTL linkage analysis and genome-wide association study published from 2003 to 2022. A total of 332 QTL, 270 GWAS loci and 83 genes for PH were integrated onto chromosomes according to their locations in the IWGSC RefSeq v2.1 and 65 QTL-rich clusters(QRC) were defined. Candidate genes in each QRC were predicted based on IWGSC Annotation v2.1 and the information on functional validation of homologous genes in other species. A total of 38 candidate genes were predicted for 65 QRC including three GA2ox genes in QRC-4B-IV, QRC-5A-VIII and QRC-6A-II(Rht24) as well as GA 20-oxidase 2(TaSD1-3A) in QRC-3A-IV. These outcomes lay concrete foundations for mapbased cloning of wheat dwarfing genes and application in breeding.