期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
石墨烯膜质子传输巨大光效应的微观机理 被引量:1
1
作者 关黎明 郭北斗 +2 位作者 贾鑫蕊 谢关才 宫建茹 《物理化学学报》 SCIE CAS CSCD 北大核心 2021年第11期12-18,共7页
单层石墨烯已被证明对质子是可渗透的,而对其它原子和分子不可渗透,这一特性在燃料电池和氢同位素分离等方面具有潜在的应用。Geim等人报道了催化活化石墨烯膜质子传输的巨大光效应。其实验表明,光照和具有催化活性金属纳米颗粒的协同... 单层石墨烯已被证明对质子是可渗透的,而对其它原子和分子不可渗透,这一特性在燃料电池和氢同位素分离等方面具有潜在的应用。Geim等人报道了催化活化石墨烯膜质子传输的巨大光效应。其实验表明,光照和具有催化活性金属纳米颗粒的协同作用在这种光效应中起关键作用。Geim等人认为巨大光效应是由金属纳米颗粒和石墨烯之间产生的局部光电压引起的。局部光电压将质子和电子传送至金属纳米颗粒以产生氢气,同时将空穴排斥使之远离。但是,根据静电场理论,这种解释并不能令人信服,并且在他们的工作中也没有此效应的微观机理分析。我们在此文中提出了一种该现象背后的确切微观机制。对于具有半金属性质的石墨烯,光激发的大多数热电子会在皮秒时间内驰豫到较低的能态,而发生化学反应所需的时间一般为纳秒范围。因此,在单一石墨烯的情况下,入射光激发的热电子在与透过石墨烯的质子反应之前就已驰豫到较低的能态。当用金属粒子修饰石墨烯时,由功函数不同引起的电子转移会导致界面偶极子的形成。当金属为可与石墨烯具有相互强烈作用的Pt、Pd、Ni等时,就会形成局部偶极子。质子将被俘获在局部偶极子的负极周围,而电子则被俘获在正极附近。在光照射后,被俘获的电子会被激发到具有更高能级的亚稳激发态。处于高活化能的亚稳激发态的自由电子具有更长的寿命,使得它有更充分的时间与透过石墨烯的质子发生化学反应。对光照情况下高能电子的浓度的计算结果显示,光照越强时被激发到激发态的电子越多。根据本文的分析,质子通过催化活化石墨烯膜的巨大光效应归因于较长寿命的热载流子和快速的质子传输速率。因为这一反应的活化能没有变化,所以金属催化剂是通过增加反应物之间成功碰撞的次数来增大反应速率,从而产生显著的光效应。该工作可能揭示了催化剂在提高光(电)催化反应效率方面的一种新微观机制。 展开更多
关键词 石墨烯 质子传输 偶极 热电子 氢气
下载PDF
Image-to-Image Style Transfer Based on the Ghost Module
2
作者 Yan jiang xinrui jia +3 位作者 Liguo Zhang Ye Yuan Lei Chen Guisheng Yin 《Computers, Materials & Continua》 SCIE EI 2021年第9期4051-4067,共17页
The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target... The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target image domain using a deep neural network.However,the existing methods typically have a large computational cost.To achieve efficient style transfer,we introduce a novel Ghost module into the GANILLA architecture to produce more feature maps from cheap operations.Then we utilize an attention mechanism to transform images with various styles.We optimize the original generative adversarial network(GAN)by using more efficient calculation methods for image-to-illustration translation.The experimental results show that our proposed method is similar to human vision and still maintains the quality of the image.Moreover,our proposed method overcomes the high computational cost and high computational resource consumption for style transfer.By comparing the results of subjective and objective evaluation indicators,our proposed method has shown superior performance over existing methods. 展开更多
关键词 Style transfer generative adversarial networks ghost module attention mechanism human visual habits
下载PDF
Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots 被引量:6
3
作者 Qi Xin xinrui jia +3 位作者 Asmat Nawaz Wenjing Xie Litao Li jian Ru Gong 《Nano Research》 SCIE EI CAS CSCD 2020年第5期1427-1433,共7页
The development of high-efficiency peroxidase mimetics is highly desirable in view of high cost and low stability of natural enzymes.From the perspective of mimicking active site microenvironment at low cost,we herein... The development of high-efficiency peroxidase mimetics is highly desirable in view of high cost and low stability of natural enzymes.From the perspective of mimicking active site microenvironment at low cost,we herein report a novel histidine-functionalized graphene quantum dot(His-GQD)/hemin complex,which exhibits the highest catalytic rate for the peroxidase-based chromogenic reaction among the hemin-containing mimetics reported so far.Also,our peroxidase mimetic shows excellent tolerance to strongly acidic conditions and can function in a wide temperature range.Lineweaver-Burk plots and comprehensive electron paramagnetic resonance analysis reveal a ping-pong type catalytic mechanism for this mimetic.In addition,His-GQD/hemin demonstrates high efficiency and accuracy in detecting H2O2 and blood glucose.Our work provides an effective design of artificial enzymes for practical applications. 展开更多
关键词 nanoenzyme graphene quantum dot heme active site peroxidase mimetic enzymatic microenvironment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部