期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application 被引量:1
1
作者 xinsu zhang Yujuan Chen +6 位作者 Linyuan Lian Zizhen zhang Yixuan Liu Li Song Chong Geng Jianbing zhang Shu Xu 《Nano Research》 SCIE EI CAS CSCD 2021年第3期628-634,共7页
Infrared lead chalcogenide quantum dots(QDs)suffer fast degradation due to the easy oxidation of surface chalcogen atoms.Here,we report a trioctylphosphine-mediated surface passivation method to improve the air stabil... Infrared lead chalcogenide quantum dots(QDs)suffer fast degradation due to the easy oxidation of surface chalcogen atoms.Here,we report a trioctylphosphine-mediated surface passivation method to improve the air stability of PbS QDs.Surface mechanism study reveals an in situ surface reaction,which leads to site-selective passivation of surface S atoms with lead mono-carboxylate.The surface capping motif sufficiently protects PbS QDs from oxygen and improves their stability as well as quantum efficiency regardless of the QD size and original ligands on surface cations.The modified PbS QDs display no obvious fluorescence quenching and surface oxidization after 30 days of air exposure.The robust surface capping also provides high compatibility of PbS QDs with polymers for optoelectronic device fabrication.The near-infrared LEDs based on the modified PbS QDs display a slight degradation of only 1.47%from the maximum intensity after continuous operation in air for 250 hours(lifetime>10,000 h)at 0.5 W/cm^(2) power density,indicating the surface passivation route is promising strategy for promoting practical optoelectronic application of PbS QDs. 展开更多
关键词 PBS quantum dot surface modification stability light-emitting diode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部