The escalating demand for fast-charging lithium-ion batteries(LIBs)has mirrored the rapid proliferation and widespread adoption of electric vehicles and portable electronic devices.Nonetheless,the sluggish diffusion k...The escalating demand for fast-charging lithium-ion batteries(LIBs)has mirrored the rapid proliferation and widespread adoption of electric vehicles and portable electronic devices.Nonetheless,the sluggish diffusion kinetics of lithium ions and electrode degradation in conventional graphite-based anodes pose formidable hurdles in achieving optimal fast-charging capabilities for LIBs.To overcome these challenges,the innovative concept of fast-charging composite anodes,a paradigm shift from traditional single-component designs,has emerged as a promising avenue to enhance the overall performance of LIBs under rapid charging conditions.This paper provides a comprehensive review of the recent advancements in fast-charging composite anodes for LIBs,with a pivotal emphasis on the design principles and material selection strategies employed in various composite anode formulations.Furthermore,it outlines the future prospects and research trajectories in this burgeoning field,offering insights into potential breakthroughs and directions for further exploration.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.22379093the Fundamental Research Funds for the Central Universities(22X010201631,23X010301599)the Youth Teacher Initiation Plan of Shanghai Jiao Tong University(23X010502207)。
文摘The escalating demand for fast-charging lithium-ion batteries(LIBs)has mirrored the rapid proliferation and widespread adoption of electric vehicles and portable electronic devices.Nonetheless,the sluggish diffusion kinetics of lithium ions and electrode degradation in conventional graphite-based anodes pose formidable hurdles in achieving optimal fast-charging capabilities for LIBs.To overcome these challenges,the innovative concept of fast-charging composite anodes,a paradigm shift from traditional single-component designs,has emerged as a promising avenue to enhance the overall performance of LIBs under rapid charging conditions.This paper provides a comprehensive review of the recent advancements in fast-charging composite anodes for LIBs,with a pivotal emphasis on the design principles and material selection strategies employed in various composite anode formulations.Furthermore,it outlines the future prospects and research trajectories in this burgeoning field,offering insights into potential breakthroughs and directions for further exploration.