Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics ...Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices,providing a better understanding of optical orbital angular momentums in the evanescent wave regime.However,these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications.Herein,it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design.Based on a near-field scanning terahertz microscopy,the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution,experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices.The proposed strategy is straightforward and universal,which can be readily applied into visible or infrared frequencies,facilitating the development of plasmonic vortex related researches and applications.展开更多
Surface plasmons(SPs)are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric.Due to their unique ability to concentrate light on two-dimensional platforms and produce ver...Surface plasmons(SPs)are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric.Due to their unique ability to concentrate light on two-dimensional platforms and produce very high local-field intensity,SPs have rapidly fueled a variety of fundamental advances and practical applications.In parallel,the development of metamaterials and metasurfaces has rapidly revolutionized the design concepts of traditional optical devices,fostering the exciting field of meta-optics.This review focuses on recent progress of meta-optics inspired SP devices,which are implemented by the careful design of subwavelength structures and the arrangement of their spatial distributions.Devices of general interest,including coupling devices,on-chip tailoring devices,and decoupling devices,as well as nascent SP applications empowered by sophisticated usage of meta-optics,are introduced and discussed.展开更多
基金supported by the National Natural Science Foundation of China(62005193,62135008,62075158,62025504,61935015)the National Science Foundation(2114103)Guangxi Key Laboratory of Optoelectroric Information Processing(GD20202).
文摘Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices,providing a better understanding of optical orbital angular momentums in the evanescent wave regime.However,these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications.Herein,it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design.Based on a near-field scanning terahertz microscopy,the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution,experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices.The proposed strategy is straightforward and universal,which can be readily applied into visible or infrared frequencies,facilitating the development of plasmonic vortex related researches and applications.
基金supported by the National Natural Science Foundation of China(Nos.62005193,62135008,62075158,62175180,61735012,61935015,and 62025504)the U.S.National Science Foundation(No.2114103).
文摘Surface plasmons(SPs)are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric.Due to their unique ability to concentrate light on two-dimensional platforms and produce very high local-field intensity,SPs have rapidly fueled a variety of fundamental advances and practical applications.In parallel,the development of metamaterials and metasurfaces has rapidly revolutionized the design concepts of traditional optical devices,fostering the exciting field of meta-optics.This review focuses on recent progress of meta-optics inspired SP devices,which are implemented by the careful design of subwavelength structures and the arrangement of their spatial distributions.Devices of general interest,including coupling devices,on-chip tailoring devices,and decoupling devices,as well as nascent SP applications empowered by sophisticated usage of meta-optics,are introduced and discussed.