Precise assembly of active component with sophisticated confinement in electrocatalyst are promising to increase the active site exposure for enhanced hydrogen evolution reaction(HER).Here,PCN-333 films with mesopores...Precise assembly of active component with sophisticated confinement in electrocatalyst are promising to increase the active site exposure for enhanced hydrogen evolution reaction(HER).Here,PCN-333 films with mesopores are firstly assembled on titanium carbide MXene with the assistance of atomic layer deposited oxide nanomembrane.With the whereafter pyrolysis process,the composite is converted to Ndoped porous carbon multi-layer containing Fe nanoparticles.The strong confinement of Fe active particle in carbon as well as great contact between metal and carbon effectively enhance active site exposure.Furthermore,this multi-layer porous structure provides high specific surface area and plentiful mesopores for electrolyte penetration.Due to the structural advantage,the composite can be well functioned in both acid and alkaline electrolytes with excellent HER performance,e.g.,low overpotential/Tafel slope.The present work may have great potential in developing high efficiency transition-metal based electrocatalysts.展开更多
基金supported by the National Key Technologies R&D Program of China(2021YFA0715302 and 2021YFE0191800)the National Natural Science Foundation of China(61975035 and 52203328)+2 种基金the Science and Technology Commission of Shanghai Municipality(22ZR1405000 and 20501130700)the China Postdoctoral Science Foundation(2022TQ0066 and 2022TQ0067)the Open Fund of the State Key Laboratory on Integrated Optoelectronics(IOSKL2020KF03).
文摘Precise assembly of active component with sophisticated confinement in electrocatalyst are promising to increase the active site exposure for enhanced hydrogen evolution reaction(HER).Here,PCN-333 films with mesopores are firstly assembled on titanium carbide MXene with the assistance of atomic layer deposited oxide nanomembrane.With the whereafter pyrolysis process,the composite is converted to Ndoped porous carbon multi-layer containing Fe nanoparticles.The strong confinement of Fe active particle in carbon as well as great contact between metal and carbon effectively enhance active site exposure.Furthermore,this multi-layer porous structure provides high specific surface area and plentiful mesopores for electrolyte penetration.Due to the structural advantage,the composite can be well functioned in both acid and alkaline electrolytes with excellent HER performance,e.g.,low overpotential/Tafel slope.The present work may have great potential in developing high efficiency transition-metal based electrocatalysts.