Enterovirus A71(EV-A71) is the major pathogen responsible for the severe hand, foot and mouth disease worldwide, for which few effective antiviral drugs are presently available. Interferon-a(IFN-a) has been used in an...Enterovirus A71(EV-A71) is the major pathogen responsible for the severe hand, foot and mouth disease worldwide, for which few effective antiviral drugs are presently available. Interferon-a(IFN-a) has been used in antiviral therapy for decades;it has been reported that EV-A71 antagonizes the antiviral activity of IFN-a based on viral 2 Apro-mediated reduction of the interferon-alpha receptor 1(IFNAR1);however, the mechanism remains unknown. Here, we showed a significant increase in IFNAR1 protein induced by IFN-a in RD cells, whereas EV-A71 infection caused obvious downregulation of the IFNAR1 protein and blockage of IFN-a signaling. Subsequently, we observed that EV-A71 2 Apro inhibited IFNAR1 translation by cleavage of the eukaryotic initiation factor 4 GI(eIF4GI), without affecting IFNAR1 m RNA levels induced by IFN-a. The inhibition of IFNAR1 translation also occurred in puromycin-induced apoptotic cells when caspase-3 cleaved e IF4 GI. Importantly, we verified that 2 Aprocould activate cellular caspase-3, which was subsequently involved in e IF4 GI cleavage mediated by 2 Apro. Furthermore, inhibition of caspase-3 activation resulted in the partial restoration of IFNAR1 in cells transfected with 2 A or infected with EV-A71, suggesting the pivotal role of both viral 2 Aproand caspase-3 activation in the disturbance of IFN-a signaling. Collectively, we elucidate a novel mechanism by which cellular caspase-3 contributes to viral 2 Apro-mediated down-regulation of IFNAR1 at the translation level during EV-A71 infection, indicating that caspase-3 inhibition could be a potential complementary strategy to improve clinical anti-EV-A71 therapy with IFN-a.展开更多
基金grants from Beijing Natural Science Foundation(No.19G10290)National Natural Science Foundation of China(No.81772184).
文摘Enterovirus A71(EV-A71) is the major pathogen responsible for the severe hand, foot and mouth disease worldwide, for which few effective antiviral drugs are presently available. Interferon-a(IFN-a) has been used in antiviral therapy for decades;it has been reported that EV-A71 antagonizes the antiviral activity of IFN-a based on viral 2 Apro-mediated reduction of the interferon-alpha receptor 1(IFNAR1);however, the mechanism remains unknown. Here, we showed a significant increase in IFNAR1 protein induced by IFN-a in RD cells, whereas EV-A71 infection caused obvious downregulation of the IFNAR1 protein and blockage of IFN-a signaling. Subsequently, we observed that EV-A71 2 Apro inhibited IFNAR1 translation by cleavage of the eukaryotic initiation factor 4 GI(eIF4GI), without affecting IFNAR1 m RNA levels induced by IFN-a. The inhibition of IFNAR1 translation also occurred in puromycin-induced apoptotic cells when caspase-3 cleaved e IF4 GI. Importantly, we verified that 2 Aprocould activate cellular caspase-3, which was subsequently involved in e IF4 GI cleavage mediated by 2 Apro. Furthermore, inhibition of caspase-3 activation resulted in the partial restoration of IFNAR1 in cells transfected with 2 A or infected with EV-A71, suggesting the pivotal role of both viral 2 Aproand caspase-3 activation in the disturbance of IFN-a signaling. Collectively, we elucidate a novel mechanism by which cellular caspase-3 contributes to viral 2 Apro-mediated down-regulation of IFNAR1 at the translation level during EV-A71 infection, indicating that caspase-3 inhibition could be a potential complementary strategy to improve clinical anti-EV-A71 therapy with IFN-a.