期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
计算机辅助氧弹量热计探索火箭燃料的推进性能
1
作者 王玉琪 钟子婷 +6 位作者 盘盈滢 刘帅 林昕元 林耿忠 庞浩然 章伟光 何广平 《大学化学》 CAS 2020年第4期50-59,共10页
本实验基于现行“综合化学实验”进行创新性改进。将一定压力的氮气充入氧弹,在以硝酸钾为氧化剂、三氧化二铁为催化剂的条件下,混合一定比例的蔗糖得到硝糖燃料,进行燃烧,采用环境恒温量热计记录蔗糖燃烧过程中的温度变化,再通过雷诺... 本实验基于现行“综合化学实验”进行创新性改进。将一定压力的氮气充入氧弹,在以硝酸钾为氧化剂、三氧化二铁为催化剂的条件下,混合一定比例的蔗糖得到硝糖燃料,进行燃烧,采用环境恒温量热计记录蔗糖燃烧过程中的温度变化,再通过雷诺作图法校正产生的DT偏差,最终计算得到硝糖燃烧过程的恒容热效应,即为硝糖燃料的爆热值。当蔗糖:硝酸钾:氧化铁的质量比为39:59:2时,其爆热值最大,比冲最大。在上述实验的基础上,选择最佳配比的硝糖燃料,用于计算机仿真模拟火箭发射系统。通过改变燃烧室压力和燃料流速,计算得到该最佳配比硝糖燃料的比冲和火箭飞行高度,进而得到采用单级火箭将东方红一号卫星送入预定轨道的发动机参数。改变每一级火箭的燃料类型与比例,设计得到适于推进不同卫星进入预定轨道的二级火箭和三级火箭。通过设计氧弹量热计的拓展应用与计算机仿真模拟相结合的实验,达到已有实验的创新设计、启发学生创造性和引起科研兴趣的目的。 展开更多
关键词 火箭燃料 氧弹量热计 爆热值 计算机模拟
下载PDF
Facing small and biased data dilemma in drug discovery with enhanced federated learning approaches 被引量:3
2
作者 Zhaoping Xiong Ziqiang Cheng +8 位作者 xinyuan lin Chi Xu Xiaohong Liu Dingyan Wang Xiaomin Luo Yong Zhang Hualiang Jiang Nan Qiao Mingyue Zheng 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第3期529-539,共11页
Artificial intelligence(AI)models usually require large amounts of high-quality training data,which is in striking contrast to the situation of small and biased data faced by current drug discovery pipelines.The conce... Artificial intelligence(AI)models usually require large amounts of high-quality training data,which is in striking contrast to the situation of small and biased data faced by current drug discovery pipelines.The concept of federated learning has been proposed to utilize distributed data from different sources without leaking sensitive information of the data.This emerging decentralized machine learning paradigm is expected to dramatically improve the success rate of AI-powered drug discovery.Here,we simulated the federated learning process with different property and activity datasets from different sources,among which overlapping molecules with high or low biases exist in the recorded values.Beyond the benefit of gaining more data,we also demonstrated that federated training has a regularization effect superior to centralized training on the pooled datasets with high biases.Moreover,different network architectures for clients and aggregation algorithms for coordinators have been compared on the performance of federated learning,where personalized federated learning shows promising results.Our work demonstrates the applicability of federated learning in predicting drug-related properties and highlights its promising role in addressing the small and biased data dilemma in drug discovery. 展开更多
关键词 federated learning drug discovery Fed AMP Non-IID data
原文传递
PanGu Drug Model: learn a molecule like a human 被引量:1
3
作者 xinyuan lin Chi Xu +11 位作者 Zhaoping Xiong Xinfeng Zhang Ningxi Ni Bolin Ni Jianlong Chang Ruiqing Pan Zidong Wang Fan Yu Qi Tian Hualiang Jiang Mingyue Zheng Nan Qiao 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第4期879-882,共4页
Dear Editor,Recent achievements in large-scale pre-trained models like GPT-3 and PanGu-α have demonstrated astounding performances in many downstream tasks of natural language processing (NLP),confirming AI to be use... Dear Editor,Recent achievements in large-scale pre-trained models like GPT-3 and PanGu-α have demonstrated astounding performances in many downstream tasks of natural language processing (NLP),confirming AI to be user-oriented for even industrial applications.Deep learning has been recognized as the most promising technology for pharmaceuticals,a powerful molecule pre-trained model that could economize researchers’tons of time.For the strategic application of AI capabilities to the drug discovery field,we pre-trained a model called PanGu Drug Model with 1.7 billion small molecules from ZINC20 (Irwin et al.,2020),DrugSpaceX(Yang et al.,2021),and UniChem (Chambers et al.,2013). 展开更多
关键词 FIR trained STRATEGIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部