期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于辐射制冷和太阳能制热的温度自适应双层薄膜
1
作者 闵心喆 王雪旸 +6 位作者 李金磊 徐凝 杜汐然 曾梦越 李炜 朱斌 朱嘉 《Science Bulletin》 SCIE EI CAS CSCD 2023年第18期2054-2062,M0004,共10页
传统的制冷、制热技术能源消耗量巨大,而利用太空和太阳作为天然冷源和热源的辐射制冷和太阳能制热技术由于零能耗、低碳排的特点受到了研究者们的广泛关注,然而,目前被动式制冷/制热器件通常只能实现单一功能、无法满足动态环境条件下... 传统的制冷、制热技术能源消耗量巨大,而利用太空和太阳作为天然冷源和热源的辐射制冷和太阳能制热技术由于零能耗、低碳排的特点受到了研究者们的广泛关注,然而,目前被动式制冷/制热器件通常只能实现单一功能、无法满足动态环境条件下多变的制冷/制热需求,本文提出了一种温度自适应的智能控温双层薄膜(STG),以辐射制冷技术和太阳能制热技术为基础,可以随温度响应实现不同环境条件下制冷/制热模式的智能切换,当温度低于其境界温度时,STG膜在太阳光波段从高反射切换为高吸收(反射率由0.962变为0.059),而中红外发射率始终保持在0.95.该光谱特性使得STG膜在夏季直射阳光(辐射峰值>900Wm)下能够实现比环境温度低5°C的亚环境日间辐射冷却,而在冬季则能实现550Wm²的太阳光加热功率。作者同时通过理论模拟验证当STG膜被大规模应用时,这种可智能切换的制冷/制热装置在节能方面展现出了巨大的应用潜力该设计策略能够为零能耗的热响应控温器件提供新的思路,并为实现能源的可持续发展提供新的途径。 展开更多
关键词 Radiative cooling Solar heating Switchable Al2O3 NPs-composited PNIPAm HYDROGEL Al2O3 nanoparticles Temperature control
原文传递
Research progress of low-dimensional perovskites:synthesis,properties and optoelectronic applications 被引量:1
2
作者 xinzhe min Pengchen Zhu +1 位作者 Shuai Gu Jia Zhu 《Journal of Semiconductors》 EI CAS CSCD 2017年第1期19-27,共9页
The lead halide-based perovskites,for instance,CH3NH3PbX3 and CsPbX3(X = Cl,Br,I),have received a lot of attention.Compared with bulk materials,low-dimensional perovskites have demonstrated a range of unique optical... The lead halide-based perovskites,for instance,CH3NH3PbX3 and CsPbX3(X = Cl,Br,I),have received a lot of attention.Compared with bulk materials,low-dimensional perovskites have demonstrated a range of unique optical,electrical and mechanical properties,which enable wide applications in solar cells,lasers and other optoelectronic devices.In this paper,we provide a summary of the research progress of the low-dimensional perovskites in recent years,from synthesis methods,basic properties to their optoelectronic applications. 展开更多
关键词 low-dimensional perovskites NANOPLATES NANOWIRES quantum dots solar cells semiconductor lasers
原文传递
Interfacial Solar Vapor Generation:Materials and Structural Design 被引量:3
3
作者 xinzhe min Bin Zhu +2 位作者 Bo Li Jinlei Li Jia Zhu 《Accounts of Materials Research》 2021年第4期198-209,共12页
The global water scarcity and deteriorating environment call for the development of environmentally friendly water treatment technologies.Solar-driven evaporation,well-known as a critical step of water cycles,provides... The global water scarcity and deteriorating environment call for the development of environmentally friendly water treatment technologies.Solar-driven evaporation,well-known as a critical step of water cycles,provides a natural inspiration for water treatment and purification with a minimized carbon footprint.The emergence of interfacial solar vapor generation enabled through carefully tailored materials design in recent years offers an effective approach to enhance solar evaporation,with unique thermodynamic and kinetic advantages.Thermodynamically,by localizing absorbed solar energy at the water surface to avoid thermal dissipation into the entire body of water,high solar vapor transfer efficiency can be achieved.Kinetically,because of reduced thermal mass,a short response time of vapor generation and fast ramping of vapor temperature can be expected.In this perspective review,we start by exhibiting the structural designs of interfacial solar vapor generators to improve the energy transfer efficiency and evaporation rate:first,tuning optical structures to improve the light absorption;second,designing a two-dimensional water path and bioinspired structures to reduce the heat loss;third,harvesting environmental energy as an extra energy input to further increase the evaporation rate.Then,we demonstrate the intrinsic thermodynamic and kinetic advantages of interfacial solar evaporation for various applications.On the thermodynamic side,low energy loss and a high evaporation rate enable effective desalination and water treatment.While on the kinetic side,quick-response and high-temperature steam generation has direct implications in fields like sterilization and power generation.In the end,we briefly conclude the main challenges in fundamental and technical aspects as well as discuss various promising pathways for future development. 展开更多
关键词 SOLAR INTERFACIAL EVAPORATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部