期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development and testing of a wireless smart toolholder with multi-sensor fusion
1
作者 Jin ZHANG xinzhen kang +3 位作者 Zhengmao YE Lei LIU Guibao TAO Huajun CAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第4期131-148,共18页
The smart toolholder is the core component in the development of intelligent and precise manufacturing.It enables in situ monitoring of cutting data and machining accuracy evolution and has become a focal point in aca... The smart toolholder is the core component in the development of intelligent and precise manufacturing.It enables in situ monitoring of cutting data and machining accuracy evolution and has become a focal point in academic research and industrial applications.However,current table and rotational dynamometers for milling force,vibration,and temperature testing suffer from cumbersome installation and provide only a single acquisition signal,which limits their use in laboratory settings.In this study,we propose a wireless smart toolholder with multi-sensor fusion for simultaneous sensing of milling force,vibration,and temperature signals.We select force,vibration,and temperature sensors suitable for smart toolholder fusion to adapt to the cutting environment.Thereafter,structural design,circular runout,dynamic balancing,static stiffness,and dynamic inherent frequency tests are conducted to assess its dynamic and static performance.Finally,the smart toolholder is tested for accuracy and repeatability in terms of force,vibration,and temperature.Experimental results demonstrate that the smart toolholder accurately captures machining data with a relative deviation of less than 1.5%compared with existing force gauges and provides high repeatability of milling temperature and vibration signals.Therefore,it is a smart solution for machining condition monitoring. 展开更多
关键词 wireless smart toolholder multi-sensor fusion circular runout dynamic balancing static stiffness dynamic inherent frequency
原文传递
Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials
2
作者 Jin ZHANG Xuefeng HUANG +3 位作者 xinzhen kang Hao YI Qianyue WANG Huajun CAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期33-97,共65页
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.... Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future. 展开更多
关键词 difficult-to-machine metal material green machining high-speed dry milling laser energy fieldassisted milling ultrasonic energy field-assisted milling cryogenic minimum quantity lubrication energy field-assisted milling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部