Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Des...Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Despite their potential,large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on nonpassivated(100)facets and trap states generated by CQD fusion.In this work,we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate(100)facets of halidecapped large-size CQDs,leading to suppressed bandtail states and reduced defect concentration.Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm^(2) at -10 mV,which is among the lowest reported for PbS CQD photodiodes.Furthermore,the performance of the photodiodes is exemplary,yielding an external quantum efficiency of 50.8%(which corresponds to a responsivity of 0.532 A W^(-1))and a specific detectivity of 2.5×10^(12) Jones at 1300 nm.By integrating CQD photodiodes with CMOS ROICs,the CQD imager provides high-resolution(640×512)SWIR imaging for infrared penetration and material discrimination.展开更多
As promising optoelectronic materials,lead sulfide quantum dots(PbS QDs)have attracted great attention.However,their applications are substantially limited by the QD quality and/or complicated synthesis.Herein,a facil...As promising optoelectronic materials,lead sulfide quantum dots(PbS QDs)have attracted great attention.However,their applications are substantially limited by the QD quality and/or complicated synthesis.Herein,a facile new synthesis is developed for highly monodisperse and halide passivated PbS QDs.The new synthesis is based on a heterogeneous system containing a PbCl_(2)-Pb(OA)_(2)solid-liquid precursor solution.The solid PbCl_(2)inhibits the diffusion of monomers and maintains a high oversaturation condition for the growth of PbS QDs,resulting in high monodispersities.In addition,the PbCl_(2)gives rise to halide passivation on the PbS QDs,showing excellent stability in air.The high monodispersity and good passivation endow these PbS QDs with outstanding optoelectronic properties,demonstrated by a 9.43%power conversion efficiency of PbS QD solar cells with a bandgap of~0.95 eV(1,300 nm).We believe that this heterogeneous strategy opens up a new avenue optimizing for the synthesis and applications of QDs.展开更多
Infrared(IR)solar cells are promising devices for improving the power conversion efficiency(PCE)of conventional solar cells by expanding the utilization region of the sunlight spectrum to near-infrared range.IR solar ...Infrared(IR)solar cells are promising devices for improving the power conversion efficiency(PCE)of conventional solar cells by expanding the utilization region of the sunlight spectrum to near-infrared range.IR solar cells based on colloidal quantum dots(QDs)have attracted extensive attention due to the widely tunable absorption spectrum controlled by dot size and the unique solution processibility.However,the trade-off in QD solar cells between light absorption and photo-generated carrier collection has limited the further improvement of PCE.Here,we present high-performance PbS QD IR solar cells resulting from the combination of boosted light absorption and optimized carrier extraction.By constructing an optical resonance cavity,the light absorption is significantly enhanced in the range of 1,150–1,300 nm at a relatively thin photoactive layer.Meanwhile,the thin photoactive layer facilitates efficient carrier extraction.Consequently,the PbS QD IR solar cells exhibit a highly efficient photoelectric conversion in the IR region,resulting in a high IR PCE of 1.3%which is comparable to the highest value of solution-processed IR solar cells based on PbSe QDs.These results demonstrate that constructing an optical resonance cavity is a reasonable strategy for effective conversion of photons in the devices aiming at light in a relatively narrow wavelength range,such as IR solar cells and narrow band photodetectors.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:U22A2083,62204091,62374068National Key Research and Development Program of China,Grant/Award Number:2021YFA0715502+5 种基金Key R&D program of Hubei Province,Grant/Award Number:2021BAA014Innovation Project of Optics Valley Laboratory,Grant/Award Numbers:OVL2021BG009,OVL2023ZD002Exploration Project of Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23F040005Fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province,Grant/Award Number:2020CFA034Fund from Science,Technology and Innovation Commission of Shenzhen Municipality,Grant/Award Numbers:GJHZ20210705142540010,GJHZ20220913143403007China Postdoctoral Science Foundation,Grant/Award Numbers:2021M691118,2022M711237,2022M721243,2023T160244。
文摘Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Despite their potential,large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on nonpassivated(100)facets and trap states generated by CQD fusion.In this work,we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate(100)facets of halidecapped large-size CQDs,leading to suppressed bandtail states and reduced defect concentration.Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm^(2) at -10 mV,which is among the lowest reported for PbS CQD photodiodes.Furthermore,the performance of the photodiodes is exemplary,yielding an external quantum efficiency of 50.8%(which corresponds to a responsivity of 0.532 A W^(-1))and a specific detectivity of 2.5×10^(12) Jones at 1300 nm.By integrating CQD photodiodes with CMOS ROICs,the CQD imager provides high-resolution(640×512)SWIR imaging for infrared penetration and material discrimination.
基金This work was supported by the National Key Research and Development Program of China(2021YFA0715502)the National Natural Science Foundation of China(61904065,61974052,and 62204091)+5 种基金Key R&D Program of Hubei Province(2021BAA014)International Science and Technology Cooperation Project of Hubei Province(2021EHB010)the fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province(2020CFA034)Scientific Research Project of Wenzhou(G20210013)the China Postdoctoral Science Foundation(2021M691118,and 2022M711237)the Fund from Science,Technology and Innovation Commission of Shenzhen Municipality(GJHZ20210705142540010).
基金supported by the National Key R&D Program of China(Nos.2021YFA0715502 and 2021YFA0715500)the National Natural Science Foundation of China(Nos.61974052 and 61904065),the Innovation Project of Optics Valley Laboratory(No.OVL2021BG009)+2 种基金the Fund from Science,Technology and Innovation Commission of Shenzhen Municipality(No.GJHZ20210705142540010)the Key R&D Program of Hubei Province(No.2021BAA014)the International Science and Technology Cooperation Project of Hubei Province(No.2021EHB010).
文摘As promising optoelectronic materials,lead sulfide quantum dots(PbS QDs)have attracted great attention.However,their applications are substantially limited by the QD quality and/or complicated synthesis.Herein,a facile new synthesis is developed for highly monodisperse and halide passivated PbS QDs.The new synthesis is based on a heterogeneous system containing a PbCl_(2)-Pb(OA)_(2)solid-liquid precursor solution.The solid PbCl_(2)inhibits the diffusion of monomers and maintains a high oversaturation condition for the growth of PbS QDs,resulting in high monodispersities.In addition,the PbCl_(2)gives rise to halide passivation on the PbS QDs,showing excellent stability in air.The high monodispersity and good passivation endow these PbS QDs with outstanding optoelectronic properties,demonstrated by a 9.43%power conversion efficiency of PbS QD solar cells with a bandgap of~0.95 eV(1,300 nm).We believe that this heterogeneous strategy opens up a new avenue optimizing for the synthesis and applications of QDs.
基金supported by the National Key R&D Program of China(No.2021YFA0715502)the National Natural Science Foundation of China(Nos.61974052,and 61904065)+2 种基金the Innovation Project of Optics Valley Laboratory(No.OVL2021BG009)the Fund from Science,Technology and Innovation Commission of Shenzhen Municipality(No.GJHZ20210705142540010)the Fundamental Research Funds for the Central Universities(WUT:2022IVA055).
文摘Infrared(IR)solar cells are promising devices for improving the power conversion efficiency(PCE)of conventional solar cells by expanding the utilization region of the sunlight spectrum to near-infrared range.IR solar cells based on colloidal quantum dots(QDs)have attracted extensive attention due to the widely tunable absorption spectrum controlled by dot size and the unique solution processibility.However,the trade-off in QD solar cells between light absorption and photo-generated carrier collection has limited the further improvement of PCE.Here,we present high-performance PbS QD IR solar cells resulting from the combination of boosted light absorption and optimized carrier extraction.By constructing an optical resonance cavity,the light absorption is significantly enhanced in the range of 1,150–1,300 nm at a relatively thin photoactive layer.Meanwhile,the thin photoactive layer facilitates efficient carrier extraction.Consequently,the PbS QD IR solar cells exhibit a highly efficient photoelectric conversion in the IR region,resulting in a high IR PCE of 1.3%which is comparable to the highest value of solution-processed IR solar cells based on PbSe QDs.These results demonstrate that constructing an optical resonance cavity is a reasonable strategy for effective conversion of photons in the devices aiming at light in a relatively narrow wavelength range,such as IR solar cells and narrow band photodetectors.