The extraction of polyphenols from Aronia melanocarpa was carried out using a combination of enzymatic and ultrasound.After single-factor and orthogonal design and experiment,the optimized polyphenol extraction condit...The extraction of polyphenols from Aronia melanocarpa was carried out using a combination of enzymatic and ultrasound.After single-factor and orthogonal design and experiment,the optimized polyphenol extraction conditions were 1%enzyme,1:40 material-to-liquid ratio,55℃,60 min ultrasonication,70%ethanol,and the final extraction amount was 88.634 mg/g,which displayed a 25.15%and 34.08%improvement compared with the single ultrasonication and enzymatic extraction methods,respectively.Significant antibacterial effects of polyphenols were shown against Staphylococcus aureus,Escherichia coli and Bacillus subtilis.Further antioxidation effects were evaluated,and the superoxide anion radical scavenging rate,hydroxyl radical scavenging rate and DPPH free radical scavenging rate reached 45.2%,83.5%and 85.4%,respectively.This combined enzymatic and ultrasonic extraction method exhibited the advantages of high extraction rate,saving solvent consumption and extraction time,but also provided a new method for the development and utilization of natural antimicrobial and antioxidant health products.展开更多
The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ag...The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages(129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REEbearing carbonatite mainly consists of Generation-1 igneous calcite(G-1 calcite) with a small amount of Generation-2 hydrothermal calcite(G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ^(13)Cv-PDB(-6.5‰ to -7.9‰) and δ^(13)OV-SMOW(8.48‰-9.67‰) values are similar to those of primary, mantlederived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO_2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.展开更多
Holoceneδ^18O records from various archives(ice cores,cave stalagmites,and peat sediments)from the Xinjiang region of northwestern China,in arid central Asia(ACA),are all derived ultimately from local precipitationδ...Holoceneδ^18O records from various archives(ice cores,cave stalagmites,and peat sediments)from the Xinjiang region of northwestern China,in arid central Asia(ACA),are all derived ultimately from local precipitationδ^18O(δ^18Op).Nevertheless,they have been proposed as indicators of different climatic parameters,such as wetness and temperature changes.This article summarizes previously reported records of moisture sources for the Xinjiang region and the results of modern observations conducted at an ice core site and a peat site in the Altai Mountains.The findings are used to propose that the overall positive trends in Holoceneδ^18O records from the various archives from the Xinjiang region primarily reflect the Holocene's long-term warming trend.It is concluded that more site-specific modern observations are needed to further elucidate the environmental significance of Holoceneδ^18O records from this region,especially for the separation of different seasonal temperature signals present withinδ^18O records.展开更多
Using the isotope enabled ECHAM4, GISS E and HadCM3 GCMs, the spatial distribution of mean 6180 in precipitation, mean seasonality and the correlations of 6180 in precipitation with temperature and precipitation amoun...Using the isotope enabled ECHAM4, GISS E and HadCM3 GCMs, the spatial distribution of mean 6180 in precipitation, mean seasonality and the correlations of 6180 in precipitation with temperature and precipitation amount are analyzed. The simulated results are in agreement with stable isotopic features by GNIP observations. Over East Asia. the distribution of ~180 in precipita- tion is of marked latitude effect and altitude effect. The latitude effect is covered by the continent effect in some regions. The larg- est seasonality of^lSo in precipitation appears in eastern Siberia controlled by cold high pressure, and the smallest seasonality is in the western Pacific controlled by the subtropical high. Relatively weak seasonality appears in middle latitudes where oceanic and continental air masses frequently interact. However, three GCMs show significant systematic lower ~180 for inland mid-high lati- tudes than GNIP data, which is related to the used isotopic scheme in GCMs. Temperature effect occurs mainly in inland mid-high latitudes. The higher the latitude and the closer the distance to inland is, then the stronger the temperature effect. Amount effect occurs mainly in low-mid latitudes and monsoon areas, with the strongest effect in low-latitude coasts or islands. However, three GCMs provide virtually non-existent amount effect in arid regions over Central Asia. The enrichment action of stable isotopes in falling raindrops under a cloud base, which is enlarged by these modes, is responsible for such a result. A significant difference between spatial distributions of δ^18O statistics by GCMs simulations and by GNIP observations is that the standard deviation of GCMs statistics is greater than that of GNIP statistics. In contrast, by comparing parallel time series at a single station, the standard deviations of GCMs simulations are smaller than that of GNIP observations.展开更多
文摘The extraction of polyphenols from Aronia melanocarpa was carried out using a combination of enzymatic and ultrasound.After single-factor and orthogonal design and experiment,the optimized polyphenol extraction conditions were 1%enzyme,1:40 material-to-liquid ratio,55℃,60 min ultrasonication,70%ethanol,and the final extraction amount was 88.634 mg/g,which displayed a 25.15%and 34.08%improvement compared with the single ultrasonication and enzymatic extraction methods,respectively.Significant antibacterial effects of polyphenols were shown against Staphylococcus aureus,Escherichia coli and Bacillus subtilis.Further antioxidation effects were evaluated,and the superoxide anion radical scavenging rate,hydroxyl radical scavenging rate and DPPH free radical scavenging rate reached 45.2%,83.5%and 85.4%,respectively.This combined enzymatic and ultrasonic extraction method exhibited the advantages of high extraction rate,saving solvent consumption and extraction time,but also provided a new method for the development and utilization of natural antimicrobial and antioxidant health products.
基金supported by the Shandong Geological Survey (Nos. 203027160439, 213027160438)Geological Investigation Work Project of China Geological Survey (Grant No. 12120115069701)+1 种基金Scientific Innovation Practice Project of Postgraduates of Chang’an University (2018019)Fundamental Research Funds for the Central Universities (No. 300102278402)
文摘The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages(129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REEbearing carbonatite mainly consists of Generation-1 igneous calcite(G-1 calcite) with a small amount of Generation-2 hydrothermal calcite(G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ^(13)Cv-PDB(-6.5‰ to -7.9‰) and δ^(13)OV-SMOW(8.48‰-9.67‰) values are similar to those of primary, mantlederived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO_2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.
基金We dedicate this paper to the memory of Prof.ZiChu Xie,who passed away in early 2020.Prof.ZiChu Xie was an inspirational mentor and friend.This work was supported by the National Science Foundation of China(41772373,41372181)the Hunan Provincial Natural Science foundation of China(2018JJ1017)+1 种基金the National Key R&D Program of China(2018YFA0606404)and the Construction Program for First-Class Disciplines(Geography)of Hunan Province,China(5010002).We thank Dr.Jan Bloemendal for improving the English language.
文摘Holoceneδ^18O records from various archives(ice cores,cave stalagmites,and peat sediments)from the Xinjiang region of northwestern China,in arid central Asia(ACA),are all derived ultimately from local precipitationδ^18O(δ^18Op).Nevertheless,they have been proposed as indicators of different climatic parameters,such as wetness and temperature changes.This article summarizes previously reported records of moisture sources for the Xinjiang region and the results of modern observations conducted at an ice core site and a peat site in the Altai Mountains.The findings are used to propose that the overall positive trends in Holoceneδ^18O records from the various archives from the Xinjiang region primarily reflect the Holocene's long-term warming trend.It is concluded that more site-specific modern observations are needed to further elucidate the environmental significance of Holoceneδ^18O records from this region,especially for the separation of different seasonal temperature signals present withinδ^18O records.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41171035,40871094)the Construct Program of the Key Discipline in Hunan Province (No. 2012001)+1 种基金Open Fund of Key Laboratory of Tibetan Environment Changes and Land Surface Processes,CAS (No. 2011004)Scientific Research Fund of Hunan Provincial Education Department (No. 09A056)
文摘Using the isotope enabled ECHAM4, GISS E and HadCM3 GCMs, the spatial distribution of mean 6180 in precipitation, mean seasonality and the correlations of 6180 in precipitation with temperature and precipitation amount are analyzed. The simulated results are in agreement with stable isotopic features by GNIP observations. Over East Asia. the distribution of ~180 in precipita- tion is of marked latitude effect and altitude effect. The latitude effect is covered by the continent effect in some regions. The larg- est seasonality of^lSo in precipitation appears in eastern Siberia controlled by cold high pressure, and the smallest seasonality is in the western Pacific controlled by the subtropical high. Relatively weak seasonality appears in middle latitudes where oceanic and continental air masses frequently interact. However, three GCMs show significant systematic lower ~180 for inland mid-high lati- tudes than GNIP data, which is related to the used isotopic scheme in GCMs. Temperature effect occurs mainly in inland mid-high latitudes. The higher the latitude and the closer the distance to inland is, then the stronger the temperature effect. Amount effect occurs mainly in low-mid latitudes and monsoon areas, with the strongest effect in low-latitude coasts or islands. However, three GCMs provide virtually non-existent amount effect in arid regions over Central Asia. The enrichment action of stable isotopes in falling raindrops under a cloud base, which is enlarged by these modes, is responsible for such a result. A significant difference between spatial distributions of δ^18O statistics by GCMs simulations and by GNIP observations is that the standard deviation of GCMs statistics is greater than that of GNIP statistics. In contrast, by comparing parallel time series at a single station, the standard deviations of GCMs simulations are smaller than that of GNIP observations.