Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitions becomes popular as an alternative to the traditional federated architecture. This study investigates th...Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitions becomes popular as an alternative to the traditional federated architecture. This study investigates the problem of designing hierarchical scheduling for IMA systems. The proposed scheduler model enables strong temporal partitioning, so that multiple hard real-time applications can be easily integrated into an uniprocessor platform. This paper derives the mathematic relationships among parti- tion cycle, partition capacity and schedulability under the real-time condition, and then proposes an algorithm for optimizing partition parameters. Real-time tasks with arbitrary deadlines are considered for generality. To further improve the basic algo- rithm and reduce the energy consumption for embedded systems in aircraft, a power optimization approach is also proposed by exploiting the slack time. Experimental results show that the designed system can guarantee the hard real-time requirement and reduce the power consumption by at least 14%.展开更多
In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground sig...In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.展开更多
Carbon nanotube(CNT) possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material.This paper aims to characterize the electromagnetic parameters...Carbon nanotube(CNT) possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material.This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method.The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed.It is shown that CNT film exhibits anisotropic electromagnetic characteristic.Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film.For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases.The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 d B to78 d B in X-band.Stretching process induces the alignment of CNTs.When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity.Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness.This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.展开更多
Safety-critical avionics systems which become more complex and tend to integrate multiple functionalities with different levels of criticality for better cost and power efficiency are subject to certifications at vari...Safety-critical avionics systems which become more complex and tend to integrate multiple functionalities with different levels of criticality for better cost and power efficiency are subject to certifications at various levels of rigorousness. In order to simultaneously guarantee temporal constraints at all different levels of assurance mandated by different criticalities, novel scheduling techniques are in need. In this paper, a mixed-criticality sporadic task model with multiple virtual deadlines is built and a certification-cognizant dynamic scheduling approach referred as earliest virtual-deadline first with mixed-criticality(EVDF-MC) is considered, which exploits different relative deadlines of tasks in different criticality modes. As for the corresponding schedulability analysis problem, a sufficient and efficient schedulability test is proposed on the basis of demand-bound functions derived in the mixed-criticality scenario. In addition, a modified simulated annealing(MSA)-based heuristic approach is established for virtual deadlines assignment. Experiments performing simulations with randomly generated tasks indicate that the proposed approach is computationally efficient and competes well against the existing approaches.展开更多
In this paper, we study relay selection under outdated channel state information(CSI) in a decode-and-forward(DF) cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we ...In this paper, we study relay selection under outdated channel state information(CSI) in a decode-and-forward(DF) cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate(PER) of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection(RRS) strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection(CRS) strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.展开更多
基金Foundation item: National Natural Science Foundation of China (60879024)
文摘Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitions becomes popular as an alternative to the traditional federated architecture. This study investigates the problem of designing hierarchical scheduling for IMA systems. The proposed scheduler model enables strong temporal partitioning, so that multiple hard real-time applications can be easily integrated into an uniprocessor platform. This paper derives the mathematic relationships among parti- tion cycle, partition capacity and schedulability under the real-time condition, and then proposes an algorithm for optimizing partition parameters. Real-time tasks with arbitrary deadlines are considered for generality. To further improve the basic algo- rithm and reduce the energy consumption for embedded systems in aircraft, a power optimization approach is also proposed by exploiting the slack time. Experimental results show that the designed system can guarantee the hard real-time requirement and reduce the power consumption by at least 14%.
基金co-supported by the National Natural Science Foundation of China (No. 61073012)the Aeronautical Science Foundation of China (No. 20111951015)
文摘In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.
基金supported by the National Science Foundation of China(No.51403009)the "Fundamental Research Funds for the Central Universities"(No.YWF-14RSC-002) of Chinathe 54th Research Institute of China Electronics Technology Group Corporation
文摘Carbon nanotube(CNT) possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material.This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method.The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed.It is shown that CNT film exhibits anisotropic electromagnetic characteristic.Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film.For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases.The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 d B to78 d B in X-band.Stretching process induces the alignment of CNTs.When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity.Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness.This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.
基金co-supported by the National Natural Science Foundation of China(No:61073012)the Aeronautical Science Foundation of China(No:20111951015)the Fundamental Research Funds for the Central Universities of China(No:YWF-14-DZXY018)
文摘Safety-critical avionics systems which become more complex and tend to integrate multiple functionalities with different levels of criticality for better cost and power efficiency are subject to certifications at various levels of rigorousness. In order to simultaneously guarantee temporal constraints at all different levels of assurance mandated by different criticalities, novel scheduling techniques are in need. In this paper, a mixed-criticality sporadic task model with multiple virtual deadlines is built and a certification-cognizant dynamic scheduling approach referred as earliest virtual-deadline first with mixed-criticality(EVDF-MC) is considered, which exploits different relative deadlines of tasks in different criticality modes. As for the corresponding schedulability analysis problem, a sufficient and efficient schedulability test is proposed on the basis of demand-bound functions derived in the mixed-criticality scenario. In addition, a modified simulated annealing(MSA)-based heuristic approach is established for virtual deadlines assignment. Experiments performing simulations with randomly generated tasks indicate that the proposed approach is computationally efficient and competes well against the existing approaches.
文摘In this paper, we study relay selection under outdated channel state information(CSI) in a decode-and-forward(DF) cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate(PER) of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection(RRS) strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection(CRS) strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.