Let X be a metrizable space and let φ:R× X → X be a continuous flow on X. For any given {φt}-invariant Borel probability measure, this paper presents a {φt}-invariant Borel subset of X satisfying the require...Let X be a metrizable space and let φ:R× X → X be a continuous flow on X. For any given {φt}-invariant Borel probability measure, this paper presents a {φt}-invariant Borel subset of X satisfying the requirements of the classical ergodic theorem for the contiImous flow (X, {φt}). The set is more restrictive than the ones in the literature, but it might be more useful and convenient, particularly for non-uniformly hyperbolic systems and skew-product flows.展开更多
Let (X, G(X), m) be a probability space with a-algebra G(X) and probability measure m. The set V in G is called P-admissible, provided that for any positive integer n and positive-measure set Vn∈ contained in V...Let (X, G(X), m) be a probability space with a-algebra G(X) and probability measure m. The set V in G is called P-admissible, provided that for any positive integer n and positive-measure set Vn∈ contained in V, there exists a Zn∈G such that Zn belong to Vn and 0 〈 m(Zn) 〈 1/n. Let T be an ergodic automorphism of (X, G) preserving m, and A belong to the space of linear measurable symplectic cocycles展开更多
文摘Let X be a metrizable space and let φ:R× X → X be a continuous flow on X. For any given {φt}-invariant Borel probability measure, this paper presents a {φt}-invariant Borel subset of X satisfying the requirements of the classical ergodic theorem for the contiImous flow (X, {φt}). The set is more restrictive than the ones in the literature, but it might be more useful and convenient, particularly for non-uniformly hyperbolic systems and skew-product flows.
文摘Let (X, G(X), m) be a probability space with a-algebra G(X) and probability measure m. The set V in G is called P-admissible, provided that for any positive integer n and positive-measure set Vn∈ contained in V, there exists a Zn∈G such that Zn belong to Vn and 0 〈 m(Zn) 〈 1/n. Let T be an ergodic automorphism of (X, G) preserving m, and A belong to the space of linear measurable symplectic cocycles