近年来,类人智能技术和相关产品飞速发展,这在很大程度上得益于完备知识图谱的构建,特别是以地理为代表的基础教育知识图谱。传统的知识图谱采用网络知识组织形式进行表示,计算复杂度较高,而且三元组的知识表示形式不能有效地度量和利...近年来,类人智能技术和相关产品飞速发展,这在很大程度上得益于完备知识图谱的构建,特别是以地理为代表的基础教育知识图谱。传统的知识图谱采用网络知识组织形式进行表示,计算复杂度较高,而且三元组的知识表示形式不能有效地度量和利用实体间语义关联关系。该文构建了基于空间投影和关系路径的知识表示学习算法—PTransW(Path-based TransE and Considering Relation Type by Weight)模型,该模型结合空间投影和关系路径来对翻译模型进行扩展,并加入关系类型的语义信息进行改进。最后,在FB15K数据集和GEOGRAPHY数据集上训练并做链接预测实验。实验结果表明,PTransW模型对复杂关系的建模能力取得了较大地提升;对于规模较小的数据集,复杂度低的TransE和TransR模型将会训练得更充分;但是PTransE和PTransW模型由于利用了关系路径和反向关系中的语义信息,在关系预测方面有很大的优势。展开更多
In this paper. a general parallelcooput lug model for simulating the two-dimensional hydrodynamic problems by the LB method is introduced. The pract ice shows that this Model is able to deal with a variety of boundari...In this paper. a general parallelcooput lug model for simulating the two-dimensional hydrodynamic problems by the LB method is introduced. The pract ice shows that this Model is able to deal with a variety of boundaries and simulate a wide range of Reynolds numbers for two-dlinensional hydrodynamic phenomena. Numerical simulations are shown to confim the exper imental resulis.展开更多
文摘近年来,类人智能技术和相关产品飞速发展,这在很大程度上得益于完备知识图谱的构建,特别是以地理为代表的基础教育知识图谱。传统的知识图谱采用网络知识组织形式进行表示,计算复杂度较高,而且三元组的知识表示形式不能有效地度量和利用实体间语义关联关系。该文构建了基于空间投影和关系路径的知识表示学习算法—PTransW(Path-based TransE and Considering Relation Type by Weight)模型,该模型结合空间投影和关系路径来对翻译模型进行扩展,并加入关系类型的语义信息进行改进。最后,在FB15K数据集和GEOGRAPHY数据集上训练并做链接预测实验。实验结果表明,PTransW模型对复杂关系的建模能力取得了较大地提升;对于规模较小的数据集,复杂度低的TransE和TransR模型将会训练得更充分;但是PTransE和PTransW模型由于利用了关系路径和反向关系中的语义信息,在关系预测方面有很大的优势。
文摘In this paper. a general parallelcooput lug model for simulating the two-dimensional hydrodynamic problems by the LB method is introduced. The pract ice shows that this Model is able to deal with a variety of boundaries and simulate a wide range of Reynolds numbers for two-dlinensional hydrodynamic phenomena. Numerical simulations are shown to confim the exper imental resulis.