期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs 被引量:10
1
作者 Cheng-Zao Jia xiong-qi pang Yan Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期1-19,共19页
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some... The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside. 展开更多
关键词 Conventional and unconventional oil and gas Petroleum system Whole petroleum system Hydrocarbon reservoirs ordered distribution model Fossil energy
下载PDF
Wettability of different clay mineral surfaces in shale:Implications from molecular dynamics simulations
2
作者 Kan-Yuan Shi Jun-Qing Chen +9 位作者 xiong-qi pang Fu-Jie Jiang Sha-Sha Hui Zhen-Cheng Zhao Di Chen Qi Cong Tong Wang Hui-Yi Xiao Xiao-Bin Yang Yu-Ying Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期689-704,共16页
Shale contains a lot of clay minerals. Clay minerals mainly exist in nano- and micro-meter sized particles, and the pore structure is complex, which leads to its extremely complex wettability. The surface wettability ... Shale contains a lot of clay minerals. Clay minerals mainly exist in nano- and micro-meter sized particles, and the pore structure is complex, which leads to its extremely complex wettability. The surface wettability of clay minerals significantly affects the oil and gas-bearing capacity of shale reservoirs. Therefore, studying the wettability of common clay minerals in shale at the nanoscale is of great significance for shale hydrocarbon exploration and development. In this study, the wetting behavior of water in n-hexane and toluene on different clay mineral surfaces at the nanoscale was systematically studied using Molecular dynamics (MD) simulation. And the influencing factors of wettability were analyzed. Through the analysis of the morphological changes of water, relative concentration of water, RDF and interaction energy, it is concluded that the following order of water wettability on the surfaces of clay minerals: montmorillonite > chlorite > kaolinite > illite. Through the analysis of interaction energy, it is concluded that the hydrophilicity of four clay minerals is stronger than that of lipophilicity. And the main interactions between water and oil and the mineral surfaces were van der Waals force and electrostatic force. In addition, the temperature, liquid hydrocarbon type, and mineralization of water affected the wettability of clay minerals. The concentration of water on the surfaces of montmorillonite, kaolinite, and illite decreased with increasing temperature, and the water wettability decreased. At 298 K, the hydrophilicity of the surfaces of the clay minerals in toluene follows the order montmorillonite > chlorite > kaolinite > illite. The higher the NaHCO3 concentration in water, the weaker the wettability of the clay mineral surfaces to water. By comparing the previous experimental results with the MD simulation results, similar wetting characteristics were obtained, and the reliability of the simulation results was verified. MD simulation was used to explore the water wetting of the surfaces of four clay minerals in a shale reservoir from the micro level. This makes up for the lack of experimental means for clarifying the flow and production mechanisms of shale oil and gas and effectively improves the evaluation technology of shale. 展开更多
关键词 SHALE Molecular dynamics NANOSCALE WETTABILITY Clay minerals
下载PDF
Middle Eocene terrestrial paleoweathering and climate evolution in the midlatitude Bohai Bay Basin of eastern China
3
作者 Di Chen Fu-jie Jiang +8 位作者 xiong-qi pang Ling-Jian Meng Zheng-Jun Wang Zhi Xu Xue Zhang Li-Na Huo Jia-Hao Wen Ren-jie zhao Yuan Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1471-1487,共17页
The middle Eocene climatic optimum(MECO,ca.-42 Ma)is a key time period for understanding Cenozoic cooling of the global climate.Still,midlatitude terrestrial records of climate evolution during MEcO epoch are rare.In ... The middle Eocene climatic optimum(MECO,ca.-42 Ma)is a key time period for understanding Cenozoic cooling of the global climate.Still,midlatitude terrestrial records of climate evolution during MEcO epoch are rare.In this study,continuous high-resolution record of shale sediments in mid-Eocene Shahejie Formation(MES shales)in the Bohai Bay Basin were performed with major-element and wavelet analysis.The midlatitude paleoweathering and paleoclimatic evolution during MEcO epoch were analyzed in this study.The MES shales experienced weak-moderate paleoweathering under a subtropical monsoon paleoclimate with mean annual temperature of 8.3-12.9℃ and mean annual precipitation of 685-1100 mm/yr.The MES shales record a mixed provenance involving intermediate igneous rocks,and low compositional maturity.The nutrient-rich environment led to enrichment in organic matter in the MES shales.Wavelet analysis revealed good periodicity about the paleoclimate and weathering during MECO epoch.In the stage I of MES shales depositional process,the paleolake was high in nutrients,and the MES shales experienced high chemical weathering due to a relatively warmer and more humid climate.In contrast,the climate in stage II was relatively cold and dry,and the maturity of the MES shales was relatively high during this stage,suggesting a relatively stable tectonic background.This work provides more terrestrial records of MEco epoch for midlatitude region,and is benefit for better understanding of the palaeoenvironment when MES shales formed.The implication of organic matters enrichment in this study is meaningful for the shale oil/gas exploration in Nanpu Sag. 展开更多
关键词 Middle Eocene PALEOCLIMATE WEATHERING MES shales Bohai Bay Basin
下载PDF
Driving forces and their relative contributions to hydrocarbon expulsion from deep source rocks: A case of the Cambrian source rocks in the Tarim Basin
4
作者 Bo pang Jun-Qing Chen +2 位作者 xiong-qi pang Tao Hu Yue Sheng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期20-33,共14页
To thoroughly understand the dynamic mechanism of hydrocarbon expulsion from deep source rocks,in this study,five types of hydrocarbon expulsion dynamics(thermal expansion,hydrocarbon diffusion,compaction,product volu... To thoroughly understand the dynamic mechanism of hydrocarbon expulsion from deep source rocks,in this study,five types of hydrocarbon expulsion dynamics(thermal expansion,hydrocarbon diffusion,compaction,product volume expansion,and capillary pressure difference(CPD))are studied.A model is proposed herein to evaluate the relative contribution of different dynamics for hydrocarbon expulsion using the principle of mass balance,and the model has been applied to the Cambrian source rocks in the Tarim Basin.The evaluation results show that during hydrocarbon expulsion from the source rocks,the relative contribution of CPD is the largest(>50%),followed by compaction(10%-40%),product volume expansion(5%-30%),and thermal expansion(2%-20%).The relative contribution of diffusion to hydrocarbon expulsion is minimal(<10%).These results demonstrate that CPD plays an important role in the hydrocarbon expulsion process of deep source rocks.The hydrocarbon expulsion process of source rocks can be categorized into three stages based on the contribution of different dynamics to the process:the first stage is dominated by compaction and diffusion to expel hydrocarbons,the second stage is dominated by product volume expansion and CPD,and the third stage is dominated by product volume expansion and CPD.This research offers new insights into hydrocarbon exploration in tight oil and gas reservoirs. 展开更多
关键词 Driving force Dynamic mechanism Hydrocarbon expulsion Deep oil and gas exploration Tarim Basin
下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:27
5
作者 xiong-qi pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil–gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pa... As petroleum exploration advances and as most of the oil–gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil–gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features.(1) While oil–gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins.(2) Many types of petroliferous traps are developed in deep basins, and tight oil–gas reservoirs in deep basin traps are arousing increasing attention.(3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth.(4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase withthe burial depth.(5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates.(6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are predominantly Paleogene and Upper Paleozoic.(7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth.(8) The temperatures of deep oil–gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient.(9) The pressures of deep oil–gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolution period.(10) Deep oil–gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation.(1) Deep petroleum in petroliferous basins has multiple sources and many different genetic mechanisms.(2) There are high-porosity,high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement.(3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins.(4) There are three dynamic boundaries for deep oil–gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation.(5)The formation and distribution of deep hydrocarbon reservoirs are controlled by free, limited, and bound fluid dynamic fields. And(6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration.Compared with middle–shallow strata, the petroleum geology and accumulation in deep basins are morecomplex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects:(1) identification of deep petroleum sources and evaluation of their relative contributions;(2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity;(3) facies feature and transformation of deep petroleum and their potential distribution; and(4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 含油气盆地 石油地质 油气成藏 特征和 石油勘探开发 深部油气藏 埋藏深度 深层油气勘探
下载PDF
Tight sandstone gas accumulation mechanism and development models 被引量:11
6
作者 Zhen-Xue Jiang Zhuo Li +4 位作者 Feng Li xiong-qi pang Wei Yang Luo-Fu Liu Fu-Jie Jiang 《Petroleum Science》 SCIE CAS CSCD 2015年第4期587-605,共19页
Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential.However, hea... Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential.However, heated debates and gaps still remain regarding classification standards of tight sandstone gas, and critical controlling factors, accumulation mechanisms, and development modes of tight sandstone reservoirs are not determined. Tight sandstone gas reservoirs in China are generally characterized by tight strata, widespread distribution areas, coal strata supplying gas, complex gas–water relations, and abnormally low gas reservoir pressure. Water and gas reversal patterns have been detected via glass tube and quartz sand modeling, and the presence of critical geological conditions without buoyancy-driven mechanisms can thus be assumed. According to the timing of gas charging and reservoir tightening phases, the following three tight sandstone gas reservoir types have beenidentified:(a) ‘‘accumulation–densification''(AD), or the conventional tight type,(b) ‘‘densification–accumulation''(DA), or the deep tight type, and(c) the composite tight type. For the AD type, gas charging occurs prior to reservoir densification, accumulating in higher positions under buoyancy-controlled mechanisms with critical controlling factors such as source kitchens(S), regional overlaying cap rocks(C), gas reservoirs,(D) and low fluid potential areas(P). For the DA type, reservoir densification prior to the gas charging period(GCP) leads to accumulation in depressions and slopes largely due to hydrocarbon expansive forces without buoyancy, and critical controlling factors are effective source rocks(S), widely distributed reservoirs(D), stable tectonic settings(W) and universal densification of reservoirs(L). The composite type includes features of the AD type and DA type, and before and after reservoir densification period(RDP), gas charging and accumulation is controlled by early buoyancy and later molecular expansive force respectively. It is widely distributed in anticlinal zones, deep sag areas and slopes, and is controlled by source kitchens(S), reservoirs(D), cap rocks(C), stable tectonic settings(W), low fluid potential areas(P), and universal reservoir densification(L). Tight gas resources with great resource potential are widely distributed worldwide, and tight gas in China that presents advantageous reservoir-forming conditions is primarily found in the Ordos, Sichuan, Tarim, Junggar, and TurpanHami basins of central-western China. Tight gas has served as the primary impetus for global unconventional natural gas exploration and production under existing technical conditions. 展开更多
关键词 致密砂岩气藏 成藏机理 非常规油气资源 有效烃源岩 吐鲁番-哈密盆地 天然气勘探 控制因素 资源潜力
下载PDF
Key factors controlling shale oil enrichment in saline lacustrine rift basin:implications from two shale oil wells in Dongpu Depression,Bohai Bay Basin 被引量:5
7
作者 Tao Hu xiong-qi pang +7 位作者 Fu-Jie Jiang Qi-Feng Wang Guan-Yun Wu Xiao-Han Liu Shu Jiang Chang-Rong Li Tian-Wu Xu Yuan-Yuan Chen 《Petroleum Science》 SCIE CAS CSCD 2021年第3期687-711,共25页
Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter content... Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter contents composed of oil-prone type I and type II kerogens within the oil window.Various types of pores and fractures exist in the shale,with a porosity of up to 14.9%.The shale has high brittle mineral contents,extensive fractures,and high potential for oil mobility due to high seepage capacity and overpressure.Although the petroleum generation potential of the shale at Well PS18-8 is relatively greater than that at Well PS18-1,oil content of the latter is greater due to the greater TOC.The porosity and fracture density observed in Well PS18-1 are greater and more conducive to shale oil enrichment.Although the shales in Wells PS18-1 and PS18-8 have similar brittle mineral contents,the former is more favorable for anthropogenic fracturing due to a higher preexisting fracture density.Besides,the shale at Well PS18-1 has a higher seepage capacity and overpressure and therefore a higher oil mobility.The fracture density and overpressure play key roles in shale oil enrichment. 展开更多
关键词 Petroleum generation potential Reservoir volume Frackability Oil mobility Shale oil enrichment Dongpu Depression Saline lacustrine rift basin
下载PDF
Evaluation and re-understanding of the global natural gas hydrate resources 被引量:3
8
作者 xiong-qi pang Zhuo-Heng Chen +8 位作者 Cheng-Zao Jia En-Ze Wang He-Sheng Shi Zhuo-Ya Wu Tao Hu Ke-Yu Liu Zheng-Fu Zhao Bo pang Tong Wang 《Petroleum Science》 SCIE CAS CSCD 2021年第2期323-338,共16页
Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global es... Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future. 展开更多
关键词 Natural gas hydrate Global gas hydrate resource Conventional oil and gas resource Renewable and sustainable energy Trend analysis method
下载PDF
Method for identifying effective carbonate source rocks:a case study from Middle-Upper Ordovician in Tarim Basin,China 被引量:2
9
作者 Jun-Qing Chen xiong-qi pang +6 位作者 Song Wu Zhuo-Heng Chen Mei-Ling Hu Luo-Fu Liu Kui-You Ma Bo pang Zhi-Peng Huo 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1491-1511,共21页
Hydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds.Taking the Middle-Upper Ordovician carbonate sou... Hydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds.Taking the Middle-Upper Ordovician carbonate source rock of Tarim Basin in China as an example,this paper proposes a method that identifies effective carbonate source rock based on the principles of mass balance.Data from the Well YW2 indicate that the Middle Ordovician Yijianfang Formation contains effective carbonate source rocks with low present-day TOC.Geological and geochemical analysis suggests that the hydrocarbons in the carbonate interval are likely self-generated and retained.Regular steranes from GC-MS analysis of oil extracts in this interval display similar features to those of the crude oil samples in Tabei area,indicating that the crude oil probably was migrated from the effective source rocks.By applying to other wells in the basin,the identified effective carbonate source rocks and non-source rock carbonates can be effectively identified and consistent with the actual exploration results,validating the method.Considering the contribution from the identified effective source rocks with low present-day TOC(TOC_(pd))is considered,the long-standing puzzle between the proved 3 P oil reserves and estimated resources in the basin can be reasonably explained. 展开更多
关键词 Effective carbonate source rock Mass balance approach Low present-day TOC ORDOVICIAN Tarim Basin
下载PDF
Evaluation of natural gas hydrate resources in the South China Sea using a new genetic analogy method 被引量:1
10
作者 Xiao-Han Liu Tao Hu +5 位作者 xiong-qi pang Zhi Xu Tong Wang Xing-Wen Zhang En-Ze Wang Zhuo-Ya Wu 《Petroleum Science》 SCIE CAS CSCD 2022年第1期48-57,共10页
Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of tod... Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development. 展开更多
关键词 South China Sea Natural gas hydrate Natural gas hydrate resources Conventional oil and gas resources Genetic method Analogy method
下载PDF
Research progress and challenges of natural gas hydrate resource evaluation in the South China Sea 被引量:1
11
作者 Zhi Xu Tao Hu +7 位作者 xiong-qi pang En-Ze Wang Xiao-Han Liu Zhuo-Ya Wu Di Chen Chang-Rong Li Xing-Wen Zhang Tong Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期13-25,共13页
As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including dete... As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation. 展开更多
关键词 South China Sea Natural gas hydrate Oil and gas resource evaluation Comprehensive exploration of oil and gas Oil and gas development strategy
下载PDF
Hydrocarbon expulsion model and resource potential evaluation of high-maturity marine source rocks in deep basins:Example from the Ediacaran microbial dolomite in the Sichuan Basin,China 被引量:1
12
作者 Wen-Yang Wang xiong-qi pang +3 位作者 Ya-Ping Wang Zhang-Xin Chen Chang-Rong Li Xin-Hua Ma 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2618-2630,共13页
Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the... Hydrocarbon expulsion features and resource potential evaluation of source rocks are crucial for the petroleum exploration.High-maturity marine source rocks have not exhibited a hydrocarbon expulsion mode owing to the lack of low-maturity source rocks in deep petroliferous basins.We considered the Ediacaran microbial dolomite in the Sichuan Basin,the largest high-maturity marine gas layer in China,to exhibit a method that quantitatively characterizes the hydrocarbon expulsion of high-maturity marine source rocks.The experiment of fluid inclusion,rock pyrolysis,and vitrinite reflectance(Ro)of 119 microbial dolomite core samples obtained from the Dengying Formation were performed.A hydrocarbon expulsion model of high-maturity source rock was established,and its resource potential was evaluated.The results showed that the Ediacaran microbial dolomite in the Sichuan Basin is a good source rock showing vast resource potential.The hydrocarbon expulsion threshold is determined to be vitrinite reflectance at 0.92%.The hydrocarbon expulsion intensities in the geologic history is high with maximum of 1.6×10^(7)t/km^(2).The Ediacaran microbial dolomite expelled approximately 1.008×10^(12)t of hydrocarbons,and the recoverable resource was 1.5×10^(12)m^(3).The region can be categorized into areasⅠ,Ⅱ,Ⅲ,andⅣ,in decreasing order of hydrocarbon expulsion intensity.Areas with a higher hydrocarbon expulsion intensity have a lower drilling risk and should be prioritized for exploration in the orderⅠ>Ⅱ>Ⅲ>Ⅳ.Two areas,northern and central parts of Ediacaran in the Sichuan Basin,were selected as prospects which had the drilling priority in the future gas exploration.The production data of 55 drilled wells verified the high reliability of this method.This model in this study does not require low-maturity samples and can be used for evaluating high-maturity marine source rocks,which has broad applicability in deep basins worldwide. 展开更多
关键词 Deep petroliferous basin Overmatured source rocks Hydrocarbon expulsion model Resource evaluation Sichuan basin
下载PDF
Distribution and resource evaluation of natural gas hydrate in South China sea by combing phase equilibrium mechanism and volumetric method 被引量:1
13
作者 Tong Wang Tao Hu +5 位作者 xiong-qi pang Xing-Wen Zhang Xiao-Han Liu Zhi Xu En-Ze Wang Zhuo-Ya Wu 《Petroleum Science》 SCIE CAS CSCD 2022年第1期26-36,共11页
China Geological Survey conducted the second trial production of natural gas hydrate(NGH)in the Shenhu Area in South China Sea(SCS)from 2019 to 2020.Compared with the first trial production in 2017,the second trial sh... China Geological Survey conducted the second trial production of natural gas hydrate(NGH)in the Shenhu Area in South China Sea(SCS)from 2019 to 2020.Compared with the first trial production in 2017,the second trial showed significantly increased daily gas production and total gas production,and removed some technical obstacles for large-scale NGH resource developments in the SCS.However,current NGH resource evaluation in the SCS is still at the stage of prospective gas content assessment,which is unable to guide further NGH exploration and development.This study utilized the hydrate phase balance to delineate the NGH distribution range and effective thickness and volumetric method to evaluate NGH resource.Based on the latest exploration and production data from the Shenhu Area,Monte Carlo simulation was performed to calculate the NGH resource amount with different probabilities.By assuming a 50%cumulative probability,the in-situ NGH resources in the SCS was estimated to be11.7×10^(12)m^(3) and the recoverable NGH resources was 2.8×10^(12)m^(3).These results will provide a more reliable resource basis for China to formulate comprehensive development strategies for oil and gas exploration in the SCS. 展开更多
关键词 South China Sea Oil and gas resource Natural gas hydrate In-situ resource Recoverable resources
下载PDF
Evaluation of natural gas hydrate resources in the South China Sea by combining volumetric and trend-analysis methods
14
作者 Xing-Wen Zhang Tao Hu +6 位作者 xiong-qi pang Yao Hu Tong Wang En-Ze Wang Zhi Xu Xiao-Han Liu Zhuo-Ya Wu 《Petroleum Science》 SCIE CAS CSCD 2022年第1期37-47,共11页
Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%sinc... Natural gas hydrate(NGH),considered as a type of premium energy alternative to conventional hydrocarbons,has been broadly studied.The estimate of the total NGH resources in the world has decreased by more than 90%since the first evaluation in 1973.Geographic and geophysical conditions of the South China Sea(SCS)are favorable for the formation of NGH,which has been proved by drilling results up to date.The recoverability of the NGH in the SCS has been confirmed by the production tests using both vertical and horizontal wells.Since 2001,35 estimates of NGH resources in the SCS have been made,with relatively stable results varying between 600 and 900×109 ton oil equivalent.In these estimations,the volumetric method was commonly adopted,but the geological conditions,the migration-accumulation mechanisms of NGH,and the practical recoverability were not considered.These estimates cannot be regarded as evaluated resources according to the international resource evaluation standards,but are at most about prospective gas content of NGH,thus inefficient for guiding explorations and developments.To solve these problems,this study divides the past NGH surveys in the SCS into seven stages,acquires key geological parameters of every stage based on previous studies and analogy with other areas,evaluates the NGH resources of these seven stages by using the volumetric method,then adopts a new trend-analysis method to simulate the downward trend of these estimates,and finally predicts the NGH resources in the SCS at 2025 and 2030.The downward trend is because of the continuous improvement of NGH understanding over time,which is consistent with the trend of global NGH estimates.At the present stage(from 2019 to 2021),the average technically recoverable resource(ATRR)is 7.0×10^(12)m^(3),and the estimates of 2025 and 2030 ATRR are 6.46×10^(12)m^(3) and 4.01×10^(12)m^(3)respectively,with a difference of less than 40%.Therefore,it can be inferred that the ATRR of NGH in the SCS is between 4.0 and 6.5×10^(12)m^(3),with an average of 5.25×10^(12)m^(3). 展开更多
关键词 Resource evaluation Natural gas hydrates The South China Sea Volumetric method Trend-analysis method
下载PDF
Reduction of global natural gas hydrate(NGH)resource estimation and implications for the NGH development in the South China Sea
15
作者 xiong-qi pang Cheng-Zao Jia +10 位作者 Zhang-Xing Chen He-Sheng Shi Zhuo-Heng Chen Tao Hu Tong Wang Zhi Xu Xiao-Han Liu Xing-Wen Zhang En-Ze Wang Zhuo-Ya Wu Bo pang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期3-12,共10页
There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35... There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35 groups of estimations were conducted on NGH resource potential since 2000,while these estimates kept almost the same with time,varying between 60 and 90 billion tons of oil equivalent(toe).What are the key factors controlling the variation trend?What are the implications of these variations for the NGH development in the world and the SCS?By analyzing the investigation characteristics of NGH resources in the world,this study divided the evaluation process into six stages and confirmed four essential factors for controlling the variations of estimates.Results indicated that the reduction trend reflects an improved understanding of the NGH formation mechanism and advancement in the resource evaluation methods,and promoted more objective evaluation results.Furthermore,the analysis process and improved evaluation method was applied to evaluate the NGH resources in the SCS,showing the similar decreasing trend of NGH resources with time.By utilizing the decreasing trend model,the predicted recoverable resources in the world and the SCS are(205-500)×10^(12)m^(3)and(0.8-6.5)×10^(12)m^(3),respectively,accounting for 20%of the total conventional oil and gas resources.Recoverable NGH resource in the SCS is only about 4%-6%of the previous estimates of 60-90 billion toe.If extracted completely,it only can support the sustainable development of China for 7 years at the current annual consumption level of oil and gas.NGH cannot be the main energy resource in future due to its low resource potential and lack of advantages in recovery. 展开更多
关键词 Natural gas hydrate Resource evaluation South China Sea Global NGH resource Reduction trend in NGH resource
下载PDF
Hydrocarbon generation from lacustrine shales with retained oil during thermal maturation
16
作者 Xin-He Shao xiong-qi pang +2 位作者 Mao-Wen Li Zhi-Ming Li Yi Zhao 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1478-1490,共13页
Thermal maturation in the shale oil/gas system is inherently complex due to the competitive interplays between hydrocarbon generation and retention processes.To study hydrocarbon generation characteristics from shales... Thermal maturation in the shale oil/gas system is inherently complex due to the competitive interplays between hydrocarbon generation and retention processes.To study hydrocarbon generation characteristics from shales within different stages of thermal maturation under the influence of retained oil,we performed Micro-Scale Sealed Vessels(MSSV)pyrolysis on a set of artificially matured lacustrine shale s amples from the Shahejie Formation in the Dongpu Depression in Bohai B ay Basin,China.Experimental results show that hydrocarbon yields of shale samples with or without retained oil at various thermal maturities follow different evolution paths.Heavy components(C15+)in samples crack at high temperatures and generally follow a sequence,where they first transform into C6-14 then to C2-5 and C1.Methane accounts for most of the gaseous products at high temperatures in all samples,with different origins.The cracking of C2-5 is the main methane-generating process in samples with retained oil,whereas the source of methane in samples without retained oil is kerogen.In the studied shales,retained oils at early-mature stage retard the transformation of liquid to gaseous hydrocarbon and prompt the cracking of C2-5 to C1 to some extent.TSR reaction related to gypsum in the studied samples is the primary reason that can explain the loss of hydrocarbon yields,especially at high temperatures.In addition,transformation of volatile hydrocarbons to gas and coke also accounts for the loss of generated hydrocarbon,as a secondary factor. 展开更多
关键词 MSSV pyrolysis Hydrocarbon generation Lacustrine shales Thermal maturation Retained oil
下载PDF
Quantitative prediction model for the depth limit of oil accumulation in the deep carbonate rocks:A case study of Lower Ordovician in Tazhong area of Tarim Basin
17
作者 Wen-Yang Wang xiong-qi pang +3 位作者 Ya-Ping Wang Zhang-Xin Chen Fu-Jie Jiang Ying Chen 《Petroleum Science》 SCIE EI CAS 2024年第1期115-124,共10页
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b... With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling. 展开更多
关键词 Deep layer Tarim Basin Hydrocarbon accumulation Depth limit of oil accumulation Prediction model
下载PDF
Quantitative effect of kerogen type on the hydrocarbon generation potential of Paleogene lacustrine source rocks,Liaohe Western Depression,China
18
作者 Sha-Sha Hui xiong-qi pang +7 位作者 Fu-Jie Jiang Chen-Xi Wang Shu-Xing Mei Tao Hu Hong pang Min Li Xiao-Long Zhou Kan-Yuan Shi 《Petroleum Science》 SCIE EI CAS 2024年第1期14-30,共17页
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ... Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration. 展开更多
关键词 Kerogen type Hydrocarbon generation potential Lacustrine source rocks Liaohe western depression
下载PDF
Sedimentary facies and lithologic characters as main factors controlling hydrocarbon accumulation and their critical conditions
19
作者 Jun-Qing Chen xiong-qi pang Dong-Xia Chen 《Journal of Palaeogeography》 SCIE CSCD 2015年第4期414-432,共19页
Taking more than 1000 clastic hydrocarbon reservoirs of Bohai Bay Basin, Tarim Basin and Junggar Basin, China as examples, the paper has studied the main controlling factors of hydrocarbon reservoirs and their critica... Taking more than 1000 clastic hydrocarbon reservoirs of Bohai Bay Basin, Tarim Basin and Junggar Basin, China as examples, the paper has studied the main controlling factors of hydrocarbon reservoirs and their critical conditions to reveal the hydrocarbon distribution and to optimize the search for favorable targets. The results indicated that the various sedimentary facies and lithologic characters control the critical conditions of hydrocarbon accumulation, which shows that hydrocarbon is distributed mainly in sedimentary facies formed under conditions of a long lasting and relatively strong hydrodynamic environment; 95% of the hydrocarbon reservoirs and reserves in the three basins is distributed in siltstones, fine sandstones, conglomerates and pebble-bearing sandstones; moreover, the probability of discovering conventional hydrocarbon reservoirs decreases with the grain size of the clastic rocks. The main reason is that the low relative porosity and permeability of fine-grained reservoirs, lead to small differences in capillary force compared with surrounding rocks and insufficiency of dynamic force for hydrocarbon accumulation; the critical condition for hydrocarbon entering reservoir is that the interfacial potential in the surrounding rock( Un) must be more than twice of that in the reservoir( Us); the probability of hydrocarbon reservoirs distribution decreases in cases where the hydrodynamic force is too high or too low and when the rocks have too coarse or too fine grains. 展开更多
关键词 油气成藏 沉积相带 控制因素 岩性特征 油气藏分布 渤海湾盆地 水动力环境 概率分布
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部