期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Underconstrained Cable-Driven Parallel Suspension System of Virtual Flight Test Model in Wind Tunnel
1
作者 Huisong Wu Kaichun Zeng +2 位作者 Li Yu Yan Li xiping kou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期395-416,共22页
An underconstrained cable-driven parallel robot(CDPR)suspension system was designed for a virtual flight testing(VFT)model.This mechanism includes two identical upper and lower kinematic chains,each of which comprises... An underconstrained cable-driven parallel robot(CDPR)suspension system was designed for a virtual flight testing(VFT)model.This mechanism includes two identical upper and lower kinematic chains,each of which comprises a cylindrical pair,rotating pair,and cable parallelogram.The model is pulled via two cables at the top and bottom and fixed by a yaw turntable,which can realize free coupling and decoupling with three rotational degrees of freedom of the model.First,the underconstrained CDPR suspension system of the VFT model was designed according to the mechanics theory,the degrees of freedom were verified,and the support platform was optimized to realize the coincidence between the model’s center of mass and the rotation center of the mechanism during the motion to ensure the stability of the support system.Finally,kinematic and dynamical modeling of the underconstrained CDPR suspension system was conducted;the system stiffness and stability criteria were deduced.Thus,the modeling of an underconstrained,reconfigurable,passively driven CDPR was understood comprehensively.Furthermore,dynamic simulations and experiments were used to verify that the proposed system meets the support requirements of the wind tunnel-based VFT model.This study serves as the foundation for subsequent wind tunnel test research on identifying the aerodynamic parameters of aircraft models,and also provides new avenues for the development of novel support methods for thewind tunnel testmodel. 展开更多
关键词 Virtual flight underconstrained cable-driven dynamic modeling stiffness and stability simulation analysis and experiment
下载PDF
Constrained layer damping treatment of a model support sting 被引量:2
2
作者 Jiahao PAN Zhanqiang LIU +1 位作者 xiping kou Qinghua SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第8期58-64,共7页
In transonic wind tunnel tests,the pulsating airflow is prone to induce the first order resonance of the sting support system.The resonance limits the wind tunnel test envelope,makes the test data inaccurate,and bring... In transonic wind tunnel tests,the pulsating airflow is prone to induce the first order resonance of the sting support system.The resonance limits the wind tunnel test envelope,makes the test data inaccurate,and brings potential security risks.In this paper,a model support sting with constrained layer damping(CLD)treatment is proposed to reduce the first order resonance response.The CLD treatment mainly consists of material selection and geometric optimization processes.The damping performance of the optimized CLD sting is compared with an AISI 1045 steel sting with the identical diameter in laboratory.The frequency response curves of the CLD sting support system and the AISI 1045 steel sting support system are obtained by sine sweep tests.The test results show that the first order resonance response of the CLD sting support system is 37.3%of that of the AISI 1045 steel sting support system.The first order damping ratios are calculated from the frequency response curves by half power point method.It is found that the first order damping ratio of the CLD sting support system is approximately 2.6 times that of the AISI 1045 steel sting support system. 展开更多
关键词 Constrained layer damping Model supports Vibration control Viscoelastic materials Wind tunnels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部