期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Al4B2O9 nanorods-modified solid polymer electrolytes with decent integrated performance 被引量:1
1
作者 xiqiang guo Wenjie Peng +7 位作者 Yuqi Wu Huajun guo Zhixing Wang Xinhai Li Yong Ke Lijue Wu Haikuo Fu Jiexi Wang 《Science China Materials》 SCIE EI CSCD 2021年第2期296-306,共11页
With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety conce... With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte. 展开更多
关键词 all-solid-state lithium ion battery Al4B2O9 nanorods ionic conductivity polymer electrolyte
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部