With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of th...With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.展开更多
When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchr...When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.展开更多
The rapid development of renewable energy sources such as wind power has brought great challenges to the power grid. Wind power penetration can be improved by using hybrid energy storage(ES) to mitigate wind power flu...The rapid development of renewable energy sources such as wind power has brought great challenges to the power grid. Wind power penetration can be improved by using hybrid energy storage(ES) to mitigate wind power fluctuation. We studied the strategy of smoothing wind power fluctuation and the strategy of hybrid ES power distribution. Firstly, an effective control strategy can be extracted by comparing constant-time low-pass filtering(CLF), variable-time low-pass filtering(VLF), wavelet packet decomposition(WPD), empirical mode decomposition(EMD) and model predictive control algorithms with fluctuation rate constraints of the identical grid-connected wind power. Moreover, the mean frequency of ES as the cutoff frequency can be acquired by the Hilbert Huang transform(HHT), and the time constant of filtering algorithm can be obtained. Then, an improved low-pass filtering algorithm(ILFA) is proposed to achieve the power allocation between lithium battery(LB) and supercapacitor(SC), which can overcome the over-charge and over-discharge of ES in the traditional low-pass filtering algorithm(TLFA). In addition, the optimized LB and SC power are further obtained based on the SC priority control strategy combined with the fuzzy control(FC) method. Finally, simulation results show that wind power fluctuation can be effectively suppressed by LB and SC based on the proposed control strategies, which is beneficial to the development of wind and storage system.展开更多
Cascading failure is a potential threat in power systems with the scale development of wind power,especially for the large-scale grid-connected and long distance transmission wind power base in China.This introduces a...Cascading failure is a potential threat in power systems with the scale development of wind power,especially for the large-scale grid-connected and long distance transmission wind power base in China.This introduces a complex network theory(CNT)for cascading failure analysis considering wind farm integration.A cascading failure power flow analysis model for complex power networks is established with improved network topology principles and methods.The network load and boundary conditions are determined to reflect the operational states of power systems.Three typical network evaluation indicators are used to evaluate the topology characteristics of power network before and after malfunction including connectivity level,global effective performance and percentage of load loss(PLL).The impacts of node removal,grid current tolerance capability,wind power instantaneous penetrations,and wind farm coupling points on the power grid are analyzed based on the IEEE 30 bus system.Through the simulation analysis,the occurrence mechanism and main influence factors of cascading failure are determined.Finally,corresponding defense strategies are proposed to reduce the hazards of cascading failure in power systems.展开更多
基金supported by the Key Technology Projects of the China Southern Power Grid Corporation(STKJXM20200059)the Key Support Project of the Joint Fund of the National Natural Science Foundation of China(U22B20123)。
文摘With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.
基金This work was supported by a grant from the science-technology program of China State Grid Corp“Research on the operation and control characteristics when the power sent out through series compensation from large new energy base”(No.52010116000S)。
文摘When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.
基金supported by National Key Research and Development Program of China (No. 2016YFB0900400)Foundation of Director of Institute of Electrical Engineering, Chinese Academy of Sciences (No. Y760141CSA)Jiangsu Province 2016 Innovation Ability Construction Special Funds (No. BM2016027)
文摘The rapid development of renewable energy sources such as wind power has brought great challenges to the power grid. Wind power penetration can be improved by using hybrid energy storage(ES) to mitigate wind power fluctuation. We studied the strategy of smoothing wind power fluctuation and the strategy of hybrid ES power distribution. Firstly, an effective control strategy can be extracted by comparing constant-time low-pass filtering(CLF), variable-time low-pass filtering(VLF), wavelet packet decomposition(WPD), empirical mode decomposition(EMD) and model predictive control algorithms with fluctuation rate constraints of the identical grid-connected wind power. Moreover, the mean frequency of ES as the cutoff frequency can be acquired by the Hilbert Huang transform(HHT), and the time constant of filtering algorithm can be obtained. Then, an improved low-pass filtering algorithm(ILFA) is proposed to achieve the power allocation between lithium battery(LB) and supercapacitor(SC), which can overcome the over-charge and over-discharge of ES in the traditional low-pass filtering algorithm(TLFA). In addition, the optimized LB and SC power are further obtained based on the SC priority control strategy combined with the fuzzy control(FC) method. Finally, simulation results show that wind power fluctuation can be effectively suppressed by LB and SC based on the proposed control strategies, which is beneficial to the development of wind and storage system.
基金This work was financially supported by a grant from the National Basic Research Program of China(973 Program)(No.2012CB215204)the Key Project of the CAS Knowledge Innovation Program“Research and demonstration of the coordinated control system based on multi-complementary energy storage”(No.KGCX2-EW-330).
文摘Cascading failure is a potential threat in power systems with the scale development of wind power,especially for the large-scale grid-connected and long distance transmission wind power base in China.This introduces a complex network theory(CNT)for cascading failure analysis considering wind farm integration.A cascading failure power flow analysis model for complex power networks is established with improved network topology principles and methods.The network load and boundary conditions are determined to reflect the operational states of power systems.Three typical network evaluation indicators are used to evaluate the topology characteristics of power network before and after malfunction including connectivity level,global effective performance and percentage of load loss(PLL).The impacts of node removal,grid current tolerance capability,wind power instantaneous penetrations,and wind farm coupling points on the power grid are analyzed based on the IEEE 30 bus system.Through the simulation analysis,the occurrence mechanism and main influence factors of cascading failure are determined.Finally,corresponding defense strategies are proposed to reduce the hazards of cascading failure in power systems.