Let H be a complex Hilbert space with dimH ≥3, Bs(H) the (real) Jordan algebra of all self-adjoint operators on H. Every surjective map Ф : Bs(H)→13s(H) preserving numerical radius of operator products (r...Let H be a complex Hilbert space with dimH ≥3, Bs(H) the (real) Jordan algebra of all self-adjoint operators on H. Every surjective map Ф : Bs(H)→13s(H) preserving numerical radius of operator products (respectively, Jordan triple products) is characterized. A characterization of surjective maps on Bs (H) preserving a cross operator norm of operator products (resp. Jordan triple products of operators) is also given.展开更多
基金Supported by National Science Foundation of China (Grant Nos. 10771157, 10871111)the Provincial Science Foundation of Shanxi (Grant No. 2007011016)the Research Fund of Shanxi for Returned Scholars (Grant No. 2007-38)
文摘Let H be a complex Hilbert space with dimH ≥3, Bs(H) the (real) Jordan algebra of all self-adjoint operators on H. Every surjective map Ф : Bs(H)→13s(H) preserving numerical radius of operator products (respectively, Jordan triple products) is characterized. A characterization of surjective maps on Bs (H) preserving a cross operator norm of operator products (resp. Jordan triple products of operators) is also given.