期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Abnormal specific heat at low temperatures and transport properties in Mg-Cu-Ag-Gd bulk metallic glass 被引量:1
1
作者 Qiang Zheng xiu su +1 位作者 Lingyun Li Juan Du 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第2期277-282,共6页
We report the pronounced low-temperature specific-heat Cpanomalies in the Mg_(59.5)Cu_(22.9)Ag_(6.6)Gd_(11)bulk metallic glass(BMG).The extrapolated electron’s temperature coefficientγ0Kis up to 681.8 mJ/(molGd·... We report the pronounced low-temperature specific-heat Cpanomalies in the Mg_(59.5)Cu_(22.9)Ag_(6.6)Gd_(11)bulk metallic glass(BMG).The extrapolated electron’s temperature coefficientγ0Kis up to 681.8 mJ/(molGd·K^(2))at 0 K,which is a heavy-fermion-like behavior.The low temperature specific heat indicates an enhancement of the conduction-electron effective mass m*below 7.5 K,suggesting that the Mg_(59.5)Cu_(22.9)Ag_(6.6)Gd_(11)BMG is not free-electron-like solid.The excess specific heat in the Mg-based BMG is interpreted with tunneling states and spin glass state(magnetism)which are determined by subtracting electrons’and phonons’contribution to the specific heat below 12 K.The Boson peak(BP)temperature is located at 27 K,which is much higher than the reported values of other BMGs.And,a BP height of 0.047 mJ/(mol·K^(4))is obtained due to reduced free volume during copper mold casting with a slow cooling rate.The electrical resistivity was also investigated between 2 and 300 K,which has a negative temperature coefficient of resistivity(TCR)below 35 K(Kondo temperature,TK)and a positive value of 3.9×10^(-4)/K above 35 K.There is a minimum at about 35 K for the electrical resistivity,which can be explained by the Kondo effect.For the resistivity above 35 K,it can be explained by the FaberZiman model due to the T-dependence change of structure factor. 展开更多
关键词 Specific heat Boson peak Electrical resistivity Bulk metallic glass(BMG) Spin glass behavior Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部