The efficient harvesting of triplet excitons is crucial to the realization of high-performance organic light-emitting diodes(OLEDs).Herein,we show that coordination of donor-acceptor(D-A)type molecules to a metal atom...The efficient harvesting of triplet excitons is crucial to the realization of high-performance organic light-emitting diodes(OLEDs).Herein,we show that coordination of donor-acceptor(D-A)type molecules to a metal atom in a monodentate fashion can lead to thermally activated delayed fluorescence(TADF)emissions with wide color tunability only through varying the noncoordinating acceptor moiety.A panel of TADF gold(Ⅰ)complexes with emission maxima(λmax)of 545–645 nm from metal perturbed intraligand charge-transfer(MPICT)excited states have been developed.Synergetic effects of heavy atom-induced spin-orbit coupling(SOC),steric-induced donor-acceptor twisting and suppressed intramolecular motions lead to high emission efficiencies of 65%-85%in doped films with delayed fluorescence lifetime of as short as 2.0μs.Transient absorption spectroscopic studies on selected complexes determined the kISCto be 6.5×10^(9)s^(-1).Theoretical calculations confirmed the participation of minor d orbital into the lowest excited state,which led to an SOC value of 5.19 cm^(-1)between the lowest-lying singlet and triplet excited states.The yellow to deep red solution-processed OLEDs based on the new gold(Ⅰ)complexes incorporated with various D-A ligands demonstrated promising performances.This study validates a modular design for TADF metal complexes,which will broaden the choices of metal centers and allow for facile color tuning via simple ligand synthesis.展开更多
基金supported by the National Natural Science Foundation of China(22322505,22271196,22301226)the Shenzhen Science and Technology Program(ZDSYS20210623091813040)support from the Department of Science and Technology of Guangdong Province(2019QN01C617)。
文摘The efficient harvesting of triplet excitons is crucial to the realization of high-performance organic light-emitting diodes(OLEDs).Herein,we show that coordination of donor-acceptor(D-A)type molecules to a metal atom in a monodentate fashion can lead to thermally activated delayed fluorescence(TADF)emissions with wide color tunability only through varying the noncoordinating acceptor moiety.A panel of TADF gold(Ⅰ)complexes with emission maxima(λmax)of 545–645 nm from metal perturbed intraligand charge-transfer(MPICT)excited states have been developed.Synergetic effects of heavy atom-induced spin-orbit coupling(SOC),steric-induced donor-acceptor twisting and suppressed intramolecular motions lead to high emission efficiencies of 65%-85%in doped films with delayed fluorescence lifetime of as short as 2.0μs.Transient absorption spectroscopic studies on selected complexes determined the kISCto be 6.5×10^(9)s^(-1).Theoretical calculations confirmed the participation of minor d orbital into the lowest excited state,which led to an SOC value of 5.19 cm^(-1)between the lowest-lying singlet and triplet excited states.The yellow to deep red solution-processed OLEDs based on the new gold(Ⅰ)complexes incorporated with various D-A ligands demonstrated promising performances.This study validates a modular design for TADF metal complexes,which will broaden the choices of metal centers and allow for facile color tuning via simple ligand synthesis.