At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, th...At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.展开更多
A new method is presented to study the function projective lag synchronization(FPLS) of chaotic systems via adaptive-impulsive control. To achieve synchronization, suitable nonlinear adaptive-impulsive controllers are...A new method is presented to study the function projective lag synchronization(FPLS) of chaotic systems via adaptive-impulsive control. To achieve synchronization, suitable nonlinear adaptive-impulsive controllers are designed. Based on the Lyapunov stability theory and the impulsive control technology, some effective sufficient conditions are derived to ensure the drive system and the response system can be rapidly lag synchronized up to the given scaling function matrix. Numerical simulations are presented to verify the effectiveness and the feasibility of the analytical results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41571417 and 61305042)the National Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+4 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)China Postdoctoral Science Foundation(Grant No.2016M602235)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.
基金supported by National Natural Science Foundation of China (Nos. 41571417 and U1604145)Science and Technology Foundation of Henan Province of China (No. 152102210048)+3 种基金Foundation and Frontier Project of Henan Province of China (No. 162300410196)China Postdoctoral Science Foundation (No. 2016M602235)Natural Science Foundation of Educational Committee of Henan Province of China (No. 14A413015)Research Foundation of Henan University (No. xxjc20140006)
文摘A new method is presented to study the function projective lag synchronization(FPLS) of chaotic systems via adaptive-impulsive control. To achieve synchronization, suitable nonlinear adaptive-impulsive controllers are designed. Based on the Lyapunov stability theory and the impulsive control technology, some effective sufficient conditions are derived to ensure the drive system and the response system can be rapidly lag synchronized up to the given scaling function matrix. Numerical simulations are presented to verify the effectiveness and the feasibility of the analytical results.