Objective: To investigate the role and potential mechanism of CXCR4 in promoting targeted homing of bone marrow mesenchymal stem cells(BMSCs) with ultrasound-exposed microbubbles(UM) pretreatment. Methods: Third gener...Objective: To investigate the role and potential mechanism of CXCR4 in promoting targeted homing of bone marrow mesenchymal stem cells(BMSCs) with ultrasound-exposed microbubbles(UM) pretreatment. Methods: Third generation BMSCs were divided into four groups control group, ultrasound(US) group, UM group and ultrasound-exposed microbubbles plus catalase group. RT-PCR and western blot were performed to determine the levels of CXCR4 m RNA transcription and protein expression, respectively. Third generation BMSCs were labeled with Fluo-α/AM and divided into three groups: control group, US group and UM group, and flurorescence intensities in the cells were observed immediately, 5 min and 15 min after intervention underflurorescence microscope. The calcium iron levels in the cells were analyzed. BMSCs were divided into i ve group: group A without calcium in the medium, group B, group C, group D and group E containing calcium chloride with concentration of l mol, 2 mol, 4mol, anti-calciurn-sensing receptor antibody, respectively. RT-PCR and western blot were performed to determine the levels of CXCR4 m RNA transcription and proteins expression of the third generation BMSCs of each group, respectively. Results: The levels of CXCR4 m RNA transcription and protein expression between US group and control group had no statistically signii cant dif erence(P>0.05) shown by RT-PCR and western blot; the transcription level in the UM group was signii cantly higher than that in US group and control group(P<0.05); and in the ultrasound-exposed microbubbles plus catalase group, the transcription level was much lower than that in UM group. Fluorescence intensify in the cells of US group had no signii cant dif erence compared with that in the cells of the control group(P>0.05), which in the cells of UM group was signii cantly higher than that in the cells of both US group and control group(P<0.05). Compared to group A, expressions of CXCR4 of group B to D were signii cantly increased in concentration-dependent manner showed by RT-PCR and western blot(P< 0.05). Compared to group C, expressions of CXCR4 of group E were signii cantly decreased(P< 0.05). Conclusions: UM can promote the inl ux of calcium in BMSCs and increase m RNA transcription and protein expression of CXCR4. The latter may partly be caused by influx of calcium.展开更多
文摘Objective: To investigate the role and potential mechanism of CXCR4 in promoting targeted homing of bone marrow mesenchymal stem cells(BMSCs) with ultrasound-exposed microbubbles(UM) pretreatment. Methods: Third generation BMSCs were divided into four groups control group, ultrasound(US) group, UM group and ultrasound-exposed microbubbles plus catalase group. RT-PCR and western blot were performed to determine the levels of CXCR4 m RNA transcription and protein expression, respectively. Third generation BMSCs were labeled with Fluo-α/AM and divided into three groups: control group, US group and UM group, and flurorescence intensities in the cells were observed immediately, 5 min and 15 min after intervention underflurorescence microscope. The calcium iron levels in the cells were analyzed. BMSCs were divided into i ve group: group A without calcium in the medium, group B, group C, group D and group E containing calcium chloride with concentration of l mol, 2 mol, 4mol, anti-calciurn-sensing receptor antibody, respectively. RT-PCR and western blot were performed to determine the levels of CXCR4 m RNA transcription and proteins expression of the third generation BMSCs of each group, respectively. Results: The levels of CXCR4 m RNA transcription and protein expression between US group and control group had no statistically signii cant dif erence(P>0.05) shown by RT-PCR and western blot; the transcription level in the UM group was signii cantly higher than that in US group and control group(P<0.05); and in the ultrasound-exposed microbubbles plus catalase group, the transcription level was much lower than that in UM group. Fluorescence intensify in the cells of US group had no signii cant dif erence compared with that in the cells of the control group(P>0.05), which in the cells of UM group was signii cantly higher than that in the cells of both US group and control group(P<0.05). Compared to group A, expressions of CXCR4 of group B to D were signii cantly increased in concentration-dependent manner showed by RT-PCR and western blot(P< 0.05). Compared to group C, expressions of CXCR4 of group E were signii cantly decreased(P< 0.05). Conclusions: UM can promote the inl ux of calcium in BMSCs and increase m RNA transcription and protein expression of CXCR4. The latter may partly be caused by influx of calcium.