期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Artificial intelligence model for studying unconfined compressive performance of fiber-reinforced cemented paste backfill 被引量:8
1
作者 Zhi YU xiu-zhi shi +4 位作者 Xin CHEN Jian ZHOU Chong-chong QI Qiu-song CHEN Di-jun RAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1087-1102,共16页
To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the com... To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the compressive property, a new artificial intelligence model was proposed by combining a newly invented meta-heuristics algorithm(salp swarm algorithm, SSA) and extreme learning machine(ELM) technology. Aiming to test the reliability of that model, 720 UCS tests with different cement-to-tailing mass ratio, solid mass concentration, fiber content, fiber length, and curing time were carried out, and a strength evaluation database was collected. The obtained results show that the optimized SSA-ELM model can accurately predict the uniaxial compressive strength of the fiber-reinforced CPB, and the model performance of SSA-ELM model is better than ANN, SVR and ELM models. Variable sensitivity analysis indicates that fiber content and fiber length have a significant effect on the UCS of fiber-reinforced CPB. 展开更多
关键词 fiber-reinforced cemented paste backfill unconfined compressive strength prediction extreme learning machine salp swarm algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部