The phragmoplast,a structure crucial for the completion of cytokinesis in plant cells,is composed of antiparallel microtubules(MTs)and actin filaments(AFs).However,how the parallel structure of phragmoplast MTs and AF...The phragmoplast,a structure crucial for the completion of cytokinesis in plant cells,is composed of antiparallel microtubules(MTs)and actin filaments(AFs).However,how the parallel structure of phragmoplast MTs and AFs is maintained,especially during centrifugal phragmoplast expansion,remains elusive.Here,we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein(AtMAC).When AtMAC was deleted,the phragmoplast showed disintegrity during centrifugal expansion,and the resulting phragmoplast fragmentation led to incomplete cell plates.Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis.Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro,and the truncated AtMAC protein,N-CC1,was the key domain controlling the ability of AtMAC.Further analysis showed that N-CC1(51–154)is the key domain for binding MTs,and N-CC1(51–125)for binding AFs.In conclusion,AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion,which is required for complete cytokinesis.展开更多
Pollen is the male gametophyte of seed plants and its tube growth is essential for successful fertilization.Mounting evidence has demonstrated that actin organization and regulation plays a central role in the process...Pollen is the male gametophyte of seed plants and its tube growth is essential for successful fertilization.Mounting evidence has demonstrated that actin organization and regulation plays a central role in the process of its germination and polarized growth.The native structures and dynamics of actin are subtly modulated by many factors among which numerous actin binding proteins(ABPs)are the most direct and significant regulators.Upstream signals such as Ca^(2+),PIP_(2)(phosphatidylinositol-4,5-bis-phosphate)and GTPases can also indirectly act on actin organization through several ABPs.Under such elaborate regulation,actin structures show dynamically continuous modulation to adapt to the in vivo biologic functions to mediate secretory vesicle transportation and fusion,which lead to normal growth of the pollen tube.Many encouraging progress has been made in the connection between actin regulation and pollen tube growth in recent years.In this review,we summarize different factors that affect actin organization in pollen tube growth and highlight relative research progress.展开更多
基金supported by grants from the National Natural Science Foundation of China(92254303 and 32170335)to Haiyun Ren and(32200272)to Pingzhou Duthe start-up fund of Beijing Normal University at Zhuhai(310432102)to Pingzhou Du。
文摘The phragmoplast,a structure crucial for the completion of cytokinesis in plant cells,is composed of antiparallel microtubules(MTs)and actin filaments(AFs).However,how the parallel structure of phragmoplast MTs and AFs is maintained,especially during centrifugal phragmoplast expansion,remains elusive.Here,we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein(AtMAC).When AtMAC was deleted,the phragmoplast showed disintegrity during centrifugal expansion,and the resulting phragmoplast fragmentation led to incomplete cell plates.Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis.Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro,and the truncated AtMAC protein,N-CC1,was the key domain controlling the ability of AtMAC.Further analysis showed that N-CC1(51–154)is the key domain for binding MTs,and N-CC1(51–125)for binding AFs.In conclusion,AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion,which is required for complete cytokinesis.
基金the National Natural Science Foundation of China(Grant Nos.30970174,30325005,30870211)the National Basic Research Program of China(No.2007CB108700)to HR.
文摘Pollen is the male gametophyte of seed plants and its tube growth is essential for successful fertilization.Mounting evidence has demonstrated that actin organization and regulation plays a central role in the process of its germination and polarized growth.The native structures and dynamics of actin are subtly modulated by many factors among which numerous actin binding proteins(ABPs)are the most direct and significant regulators.Upstream signals such as Ca^(2+),PIP_(2)(phosphatidylinositol-4,5-bis-phosphate)and GTPases can also indirectly act on actin organization through several ABPs.Under such elaborate regulation,actin structures show dynamically continuous modulation to adapt to the in vivo biologic functions to mediate secretory vesicle transportation and fusion,which lead to normal growth of the pollen tube.Many encouraging progress has been made in the connection between actin regulation and pollen tube growth in recent years.In this review,we summarize different factors that affect actin organization in pollen tube growth and highlight relative research progress.