The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were invest...The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were investigated for pig manure(PM)and pretreated/untreated corn stover in batch and semicontinuous anaerobic digestion(AD)system.The results showed that SMR and pretreatment affected co-digestion performance.The maximum cumulative methane yield of 428.5 ml·g^(-1)(based on volatile solids(VS))was obtained for PCP13,which was 35.7%and 40.0%higher than that of CSU and PM.In the first 5 days,the maximum methane yield improvement rate was 378.1%for PCP13.The daily methane yield per gram VS of PCP13 was 11.4%-18.5%higher than that of PC_(U)13.Clostridium_sensu_stricto_1,DMER64,and Bacteroides and Methanosaeta,Methanobacterium,and Methanospirillum had higher relative abundance at the genus level.Therefore,SMR and OLR are important factor affecting the AD process,and OLR can affect methane production through volatile fatty acids.展开更多
Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations o...Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.展开更多
To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice stra...To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.展开更多
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt%CexZr1-xO2/SBA-15 (x=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, T...A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt%CexZr1-xO2/SBA-15 (x=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, TEM and BET techniques. The catalytic activities of the catalysts for steam reforming of methane were evaluated in a continuous flow microreactor. The results indicated that both the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts had good catalytic activities at at- mospheric pressure. The 10wt%Ni/SBA-15 catalyst exhibited excellent stability at 800 ℃ for time on stream of 740 h. After the reaction, carbon deposits were not formed on the surface of the catalyst. There existed a regular hexagonal mesoporous structure in the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts. The nickel species and the CexZr1-xO2 component were all confined in the SBA-15 mesopores. The CexZr1-xO2 could promote dispersion of the nickel species in the Ni/CexZr1-xO2/SBA-15 catalysts.展开更多
A series of Ni/SBA-15 catalysts with 5wt% to 15wt% Ni content as well as a series of 12.5%Ni/Cu/SBA-15 catalysts with 1% to 10% copper content were prepared by the impregnation method. The catalytic performance for pa...A series of Ni/SBA-15 catalysts with 5wt% to 15wt% Ni content as well as a series of 12.5%Ni/Cu/SBA-15 catalysts with 1% to 10% copper content were prepared by the impregnation method. The catalytic performance for partial oxidation of methane was investigated in a continuous flow microreactor under atmospheric pressure. The textural and chemical properties of the catalysts were characterized by XRD, TEM, BET and Hz-TPR techniques. The results indicated that the catalysts modified with Cu promoter showed better performance than those without modification. For the 12.5%Ni/2.5%/Cu/SBA-15 catalyst, at 850 ℃ the conversion of CH4 reached 97.9% and the selectivity of CO and H2 reached 98.0% and 96.0%, respectively. In XRD patterns of the Ni/Cu/SBA-15 catalyst with 7.5 to 10% Cu contents there were CuO characteristic peaks beside NiO characteristic peaks. The mesoporous structure of SBA-15 was retained in all of the catalysts. TPR analysis of the catalysts revealed that a strong interaction between Ni, Cu promoter and SBA-15 support may be existed. This interaction enhanced significantly the redox properties of the catalysts resulting in the higher catalytic activity.展开更多
Rice straw physicochemical characteristics and anaerobic digestion(AD)performance via ammonia pretreatment at varying ammonia concentrations(2%,4%,and 6%)and moisture contents(30%,50%,70%,and 90%)under a mild conditio...Rice straw physicochemical characteristics and anaerobic digestion(AD)performance via ammonia pretreatment at varying ammonia concentrations(2%,4%,and 6%)and moisture contents(30%,50%,70%,and 90%)under a mild condition were investigated.The results showed that the ammonia pretreatment effectively damaged the rice straw structure,increased the soluble organic concentration,and improved rice straw hydrolysis and AD performance.After pretreatment,the ester bond and ether bond were ruptured in lignocellulose and the volatile fatty acids(VFAs)were within the range of 1457.81–1823.67 mg·L-1.In addition,ammonia pretreatment had high selectivity on lignin removal,resulting in a maximum lignin removal rate of 50.80%.The highest methane yield of rice straw was 250.34 ml·(g VS)-1 at a 4%ammonia concentration coupled with a 70%moisture content,which was 28.55%higher than that of the control.The result showed that ammonia pretreatment of rice straw is technically suitable to enhance AD performance for further application.展开更多
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o...In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.展开更多
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and...A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and their catalytic performances for the reaction of combined steam and carbon dioxide reforming of methane were investigated in a continuous flow microreactor. The structures of the catalysts were characterized using the XRD, H2-TPR and CO2-TPD techniques. The results indicated that the CO selectivity for this reaction was very close to 100%, and the H2/CO ratio of the product gas could be controlled by changing the H2O/CO2 molar ratio of the feed gas. The simultaneous and plentiful existing of steam and CO2 had a significant influence on the catalytic performance of the 10%Ni/SBA-15 catalyst without modification. After reacting at 850 °C for 120 h over this catalyst, the CH4 conversion dropped from 98% to 85%, and the CO2 conversion decreased from 86% to 53%. However, the 10%Ni/3%MgO/SBA-15 catalyst exhibited a much better catalytic performance, and after reacting for 620 h, the CO2 conversion over this catalyst dropped from 92% to around 77%, while the CH4 conversion was not decreased. Oxidation of the Ni0 species as well as carbon deposition during the reaction were the main reasons for the deactivation of the catalyst without modification. On the other hand, modification by the MgO promoter improved the dispersion of the Ni0 species, and enhanced the CO2 adsorption affinity which in turn depressed the occurring of carbon deposition, and thus retarded the deactivation process.展开更多
This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results ...This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results showed that the s COD concentrations and VFA production appeared the same trend,which was inversely related with that of daily biogas production.The cumulative methane yield of RS was 194.9 ml·(g VS)^-1·^-1.The modified Gompertz model is the best fit for measured methane yields of RS in the three kinetic models of first-order kinetic,Cone and modified Gompertz.Firmicutes,Bacteroidetes,and Euryarchaeota were the dominant microbial phyla throughout AD process.At the genus level,the microorganisms mainly composed of Clostridium,Vadin,Terrisporobacter,Methanosaeta,Methanobacterium,and Methanosarcina.Proteiniphilum showed strong relationship with s COD and VFA production.Clostridium and Terrisporobacter displayed relationship with biogas production.Therefore,in order to improve the stability of the AD system,the parameter changes of VFAs,s COD,and biogas yield were monitored in the RS AD process.The study can provide theoretical basis for improving the efficiency of RS AD.展开更多
A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method.The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a c...A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method.The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a continuous flow fixed-bed micro-reactor.The stability of the catalyst was tested at 800 ?C.The results indicated that 10wt%Ni/SBA-15 catalyst exhibited the highest catalytic activities for the combined reforming of the simulated biogas to syngas.Under the reaction conditions of the feed gas molar ratios CH4/CO2/O2/H2O = 2/1/0.6/0.6,GHSV = 24000 ml·gcat^-1·h^-1 and the reaction temperature T = 800 ℃,the conversions of CH4 and CO2 were 92.8% and 76.3%,respectively,and the yields of CO and H2 were 99.0% and 82.0%,respectively.The catalytic activities of the catalyst did not decrease obviously after 100 h reaction time on stream.展开更多
In genomic selection, prediction accuracy is highly driven by the size of animals in the reference population(RP).Combining related populations from different countries and regions or using a related population with l...In genomic selection, prediction accuracy is highly driven by the size of animals in the reference population(RP).Combining related populations from different countries and regions or using a related population with large size of RP has been considered to be viable strategies in cattle breeding. The genetic relationship between related populations is important for improving the genomic predictive ability. In this study, we used 122 French bulls as test individuals. The genomic estimated breeding values(GEBVs) evaluated using French RP, America RP and Chinese RP were compared.The results showed that the GEBVs were in higher concordance using French RP and American RP compared with using Chinese population. The persistence analysis, kinship analysis and the principal component analysis(PCA) were performed for 270 French bulls, 270 American bulls and 270 Chinese bulls to interpret the results. All the analyses illustrated that the genetic relationship between French bulls and American bulls was closer compared with Chinese bulls. Another reason could be the size of RP in China was smaller than the other two RPs. In conclusion, using RP of a related population to predict GEBVs of the animals in a target population is feasible when these two populations have a close genetic relationship and the related population is large.展开更多
In this study,ultrasonic field was applied during potassium hydroxide(KOH) pretreatment of wheat straw(WS).Three concentrations of KOH(2%,4%,and 6%) were tested during pretreatment.The results showed that there was a ...In this study,ultrasonic field was applied during potassium hydroxide(KOH) pretreatment of wheat straw(WS).Three concentrations of KOH(2%,4%,and 6%) were tested during pretreatment.The results showed that there was a significant influence of the ultrasonic assisted KOH pretreatment(KOH(Upt)) on physiochemical characteristics of WS during pretreatment as well as on digester performance.The pretreatment time was optimized to 36 h for all KOH concentrations.The highest total volatile fatty acid(TVFA) productions(3189 mg·L^-1) from 6%KOHupt samples were observed.Similarly,the SEM analysis and FTIR observation revealed that KOH(Upt) effectively disrupted the physical morphology of WS and successful breaking of lignin and hemicellulose linkage between carboxyl groups.Moreover,the highest biogasification(555 ml·(g VS(loaded))^-1) and biomethane productions(282 ml·(g VS(loaded))^-1) from 4%KOH(Upt) digesters,with 69% of biodegradability,indicated significant availability of organic matter from KOH(Upt).The R^2 values(0.993-0.998) in Modified Gompertz Model indicated that the model was feasible to predict methane yield for this study.Similarly,the Bo values for 4%KOH(Upt)(283.30±2.74 ml·(gVS(loaded))^-1) were also in agreement to the experimental methane yield.These results suggested that ultrasonic addition during KOH pretreatment of WS can effectively increase the organic yield during pretreatment.Moreover,the increase in methane production from 4% KOH(Upt) suggested that digester performance can be improved with lower KOH concentrations using this pretreatment.展开更多
Rotating bed can be used in desorption operation of biogas upgrading as a new technology. For enough time to desorb, it is important to study the relationship between the residence time of liquid in rotating bed and t...Rotating bed can be used in desorption operation of biogas upgrading as a new technology. For enough time to desorb, it is important to study the relationship between the residence time of liquid in rotating bed and the material diffusion time of liquid droplet in desorption process. By theoretical deduction, the exponential relation between residence time and liquid flow rate and rotational speed and kinematic viscosity is obtained. By analyzing the solution of nonlinear partial differential equation, the time law of material diffusion in the droplet is obtained. Moreover, by comparing the residence and diffusion times, the diffusion time can be within or out of residence time range, which has a direct relationship to rotational speed and liquid flow. By experiment, the comparison between residence and diffusion times is more realistic when the rotational speed is higher.展开更多
The anaerobic digestion(AD)performance of spent cow bedding was investigated with different hydrothermal pretreatment(HP)conditions.Spent cow bedding was pretreated with low temperatures(50,70,and 90℃)and different p...The anaerobic digestion(AD)performance of spent cow bedding was investigated with different hydrothermal pretreatment(HP)conditions.Spent cow bedding was pretreated with low temperatures(50,70,and 90℃)and different pretreatment times(2-72 h)with ammonia and without ammonia.The results showed that spent cow bedding was a good raw material for AD.After pretreatment,the concentration of volatile fatty acids(VFAs)in the group of hydrothermal pretreatments with ammonia(HPA)was higher than that in the HP group at the same pretreatment temperature and time.The optimal pretreatment condition was achieved with an HPA of 50℃ holding for 72 h.At the optimal condition,the highest concentration of VFAs was 1.58-10.85 times higher than that of the other pretreated groups.The highest hemicellulose and lignin removal rates were 58.07%and 10.32%,respectively.The highest methane yield was 163.0 ml(g· VS)^(-1),which was 48.9%higher than that of the untreated group.The VFAs,pH,and reducing sugars showed positive relationships with the methane yield.Therefore,HP at low temperature can enhance the AD performance of spent cow bedding.展开更多
This study proposed an integrated process of Pleurotus ostreatus cultivation,anaerobic digestion of spent mushroom substrate(SMS),and fertilizer value evaluation of digestate for achieving multiple products and full u...This study proposed an integrated process of Pleurotus ostreatus cultivation,anaerobic digestion of spent mushroom substrate(SMS),and fertilizer value evaluation of digestate for achieving multiple products and full utilization of nutrients in rice straw.The results showed that the cultivated mushroom yield from rice straw was 401 g/kg TS.Biomethane yield obtained from anaerobic digestion of SMS was 133.0 mL/g VS.The fertilizer value of the SMS based digestate reached the national standard of fertilizers from organic sources in China.Substance conversion of rice straw during the integrated process revealed that the process could achieve the full utilization of nutrients in the substrate.Energy assessment indicated that the process had the viability to be applied.Therefore,this study provided a feasible strategy to set up a complete recycling agricultural ecosystem.展开更多
In this study,the acidification and two-phase anaerobic digestion(AD)were conducted in batch and continuous stirred tank reactors,respectively,to determine the effect of acidification on methane production in AD.The r...In this study,the acidification and two-phase anaerobic digestion(AD)were conducted in batch and continuous stirred tank reactors,respectively,to determine the effect of acidification on methane production in AD.The results showed that two-phase AD achieved an observable enhancement in the methane production under optimal acidification conditions(organic loading rate of 60 g TS/L,the ratio of raw material to inoculum(based on dry weight)of 2:1,the temperature of 45℃,urea concentration of 4%,and time of 6 d).Under these conditions,the daily biogas and biomethane productions were 0.48 L/g TS and 0.30 L/g TS,respectively,which were 26.32%and 57.89%higher than those of the untreated group,respectively.The ammonia nitrogen(AN),alkalinity,and pH value of the methanogenic phase of C4 continued to increase up to 956 mg/L,5680 mg/L,and 7.41,respectively,after 60 d,which might have destroyed the stability of the system.Therefore,for the purpose of reusing the nitrogen source,reducing AN,and maintaining the stability of the reaction system,another set of acidification and two-phase AD with water pretreatment using the discharge of the methanogenic phase of C4 as the inoculum was subsequently conducted.The results showed that the daily biogas productions of single-phase and two-phase AD were 5.26%and 15.79%higher than that of the untreated group,respectively;similarly,their daily methane yields were 10.42%and 21.05%higher than that of the untreated group.展开更多
Reverse osmosis system with the disc-tube mod-ule(DT-RO)was applied to treat landfill leachate on full scale at the Changshengqiao Sanitary Landfill,Chongqing City,China.In the first six-mouth operation phase,the trea...Reverse osmosis system with the disc-tube mod-ule(DT-RO)was applied to treat landfill leachate on full scale at the Changshengqiao Sanitary Landfill,Chongqing City,China.In the first six-mouth operation phase,the treatment performance of DT-RO system had been excel-lent and stable.The removal rate of chemical oxygen demand(COD),total organic carbon(TOC),electrical con-ductivity(EC),and ammonia nitrogen(NH 3-N)reached 99.2–99.7%,99.2%,99.6%,and over 98%,respectively.The rejection of Ca^(2+),Ba^(2+),and Mg^(2+)was over 99.9%,respectively.Suspended solid(SS)was not detectedin prod-uct water.Effective methods had been adopted to control membrane fouling,of which chemical cleaning is of utmost importance to guarantee the long smooth operation of the DT-ROsystem.The DT-ROsystemiscleanedinturnswith Cleaner A and Cleaner C.At present,the 1st stage cleaning cycle by Cleaner A and Cleaner C is conducted every 100 and500 h,respectively,dependingonrawthewaterquality.展开更多
Sugarcane leaves(SL)pretreated by alkali was used as substrate to enhance biogas production via mesophilic anaerobic digestion(AD)in this study.Effectiveness of different concentrations of NaOH pretreatment on AD perf...Sugarcane leaves(SL)pretreated by alkali was used as substrate to enhance biogas production via mesophilic anaerobic digestion(AD)in this study.Effectiveness of different concentrations of NaOH pretreatment on AD performance was investigated.Results showed that compared to untreated sample of SL,the lignocellulose(LCH)content of NaOH pretreated group was decreased by 5.79%-16.85%.However,the cumulative biogas production of the pretreated samples increased in the range of 34.54%-82.67%;moreover,T90 was shorten by 5-7 d.The highest anaerobic digestibility of SL was achieved at 6%NaOH pretreatment,which produced 287.30 mL/g TS of biogas.A significant interactive effect of the three parameters(temperature,SL/manure mixing ratio and C/N ratio)was found on the biogasification of anaerobic co-digestion,and a maximum biogas production was achieved at 36.2oC,mixing ratio of 1.6 and C/N ratio of 29.2.These show that the verification experiment confirmed the optimization results.This study provides meaningful insight for exploring efficient pretreatment strategy and optimal condition to stabilize and enhance AD performance for practical application.展开更多
基金the fund supports from the Fundamental Research Funds for the Central Universities(JD2326).
文摘The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were investigated for pig manure(PM)and pretreated/untreated corn stover in batch and semicontinuous anaerobic digestion(AD)system.The results showed that SMR and pretreatment affected co-digestion performance.The maximum cumulative methane yield of 428.5 ml·g^(-1)(based on volatile solids(VS))was obtained for PCP13,which was 35.7%and 40.0%higher than that of CSU and PM.In the first 5 days,the maximum methane yield improvement rate was 378.1%for PCP13.The daily methane yield per gram VS of PCP13 was 11.4%-18.5%higher than that of PC_(U)13.Clostridium_sensu_stricto_1,DMER64,and Bacteroides and Methanosaeta,Methanobacterium,and Methanospirillum had higher relative abundance at the genus level.Therefore,SMR and OLR are important factor affecting the AD process,and OLR can affect methane production through volatile fatty acids.
基金Supported by Specialized Research Fund for the Doctoral Program of Higer Education(20120010110004)the Natural Science Foundation of Beijing(8142030)
文摘Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.
基金supported by the National Key Research&Development Program of Ministry of Science and Technology of the People’s Republic of China(grant number 2018YFC1900901).
文摘To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.
基金Financial funds from the Chinese Natural Science Foundation(Project No.20473009)the Beijing Natural Science Foundation(Project No.8062023)+1 种基金the National Basic Research Program of China(Project No.2005CB221405)the National"863"Project of China(No.2006 AA10Z425)are gratefully acknowledged.
文摘A series of Ni/SBA-15 catalysts with Ni contents ranging from 5wt% to 20wt% as well as 10wt%Ni/10wt%CexZr1-xO2/SBA-15 (x=0, 0.5, 1) were prepared. The structures of the catalysts were characterized using XRD, TPR, TEM and BET techniques. The catalytic activities of the catalysts for steam reforming of methane were evaluated in a continuous flow microreactor. The results indicated that both the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts had good catalytic activities at at- mospheric pressure. The 10wt%Ni/SBA-15 catalyst exhibited excellent stability at 800 ℃ for time on stream of 740 h. After the reaction, carbon deposits were not formed on the surface of the catalyst. There existed a regular hexagonal mesoporous structure in the Ni/SBA-15 and the Ni/CexZr1-xO2/SBA-15 catalysts. The nickel species and the CexZr1-xO2 component were all confined in the SBA-15 mesopores. The CexZr1-xO2 could promote dispersion of the nickel species in the Ni/CexZr1-xO2/SBA-15 catalysts.
基金supported by the National Basic Research Program of China (Project No. 2005CB221405)the National "863" Project of China (No.2006AA10Z425)
文摘A series of Ni/SBA-15 catalysts with 5wt% to 15wt% Ni content as well as a series of 12.5%Ni/Cu/SBA-15 catalysts with 1% to 10% copper content were prepared by the impregnation method. The catalytic performance for partial oxidation of methane was investigated in a continuous flow microreactor under atmospheric pressure. The textural and chemical properties of the catalysts were characterized by XRD, TEM, BET and Hz-TPR techniques. The results indicated that the catalysts modified with Cu promoter showed better performance than those without modification. For the 12.5%Ni/2.5%/Cu/SBA-15 catalyst, at 850 ℃ the conversion of CH4 reached 97.9% and the selectivity of CO and H2 reached 98.0% and 96.0%, respectively. In XRD patterns of the Ni/Cu/SBA-15 catalyst with 7.5 to 10% Cu contents there were CuO characteristic peaks beside NiO characteristic peaks. The mesoporous structure of SBA-15 was retained in all of the catalysts. TPR analysis of the catalysts revealed that a strong interaction between Ni, Cu promoter and SBA-15 support may be existed. This interaction enhanced significantly the redox properties of the catalysts resulting in the higher catalytic activity.
基金the funding support from the Tianjin City Science and Technology Planning Project of the People’s Republic of China(grant number 18ZXSZSF00120).
文摘Rice straw physicochemical characteristics and anaerobic digestion(AD)performance via ammonia pretreatment at varying ammonia concentrations(2%,4%,and 6%)and moisture contents(30%,50%,70%,and 90%)under a mild condition were investigated.The results showed that the ammonia pretreatment effectively damaged the rice straw structure,increased the soluble organic concentration,and improved rice straw hydrolysis and AD performance.After pretreatment,the ester bond and ether bond were ruptured in lignocellulose and the volatile fatty acids(VFAs)were within the range of 1457.81–1823.67 mg·L-1.In addition,ammonia pretreatment had high selectivity on lignin removal,resulting in a maximum lignin removal rate of 50.80%.The highest methane yield of rice straw was 250.34 ml·(g VS)-1 at a 4%ammonia concentration coupled with a 70%moisture content,which was 28.55%higher than that of the control.The result showed that ammonia pretreatment of rice straw is technically suitable to enhance AD performance for further application.
基金Supported by the Key Technologies R&D Program of China(2016YFD0501402)
文摘In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.
基金the National Basic Research Program ofChina (Project No. 2005CB221405)the National "863" Project ofChina (No. 2006AA10Z425)the Beijing Natural Science Foun-dation (Project No: 8062023)
文摘A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and their catalytic performances for the reaction of combined steam and carbon dioxide reforming of methane were investigated in a continuous flow microreactor. The structures of the catalysts were characterized using the XRD, H2-TPR and CO2-TPD techniques. The results indicated that the CO selectivity for this reaction was very close to 100%, and the H2/CO ratio of the product gas could be controlled by changing the H2O/CO2 molar ratio of the feed gas. The simultaneous and plentiful existing of steam and CO2 had a significant influence on the catalytic performance of the 10%Ni/SBA-15 catalyst without modification. After reacting at 850 °C for 120 h over this catalyst, the CH4 conversion dropped from 98% to 85%, and the CO2 conversion decreased from 86% to 53%. However, the 10%Ni/3%MgO/SBA-15 catalyst exhibited a much better catalytic performance, and after reacting for 620 h, the CO2 conversion over this catalyst dropped from 92% to around 77%, while the CH4 conversion was not decreased. Oxidation of the Ni0 species as well as carbon deposition during the reaction were the main reasons for the deactivation of the catalyst without modification. On the other hand, modification by the MgO promoter improved the dispersion of the Ni0 species, and enhanced the CO2 adsorption affinity which in turn depressed the occurring of carbon deposition, and thus retarded the deactivation process.
基金the fund supports from the National Natural Science Foundation of China(21808010).
文摘This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results showed that the s COD concentrations and VFA production appeared the same trend,which was inversely related with that of daily biogas production.The cumulative methane yield of RS was 194.9 ml·(g VS)^-1·^-1.The modified Gompertz model is the best fit for measured methane yields of RS in the three kinetic models of first-order kinetic,Cone and modified Gompertz.Firmicutes,Bacteroidetes,and Euryarchaeota were the dominant microbial phyla throughout AD process.At the genus level,the microorganisms mainly composed of Clostridium,Vadin,Terrisporobacter,Methanosaeta,Methanobacterium,and Methanosarcina.Proteiniphilum showed strong relationship with s COD and VFA production.Clostridium and Terrisporobacter displayed relationship with biogas production.Therefore,in order to improve the stability of the AD system,the parameter changes of VFAs,s COD,and biogas yield were monitored in the RS AD process.The study can provide theoretical basis for improving the efficiency of RS AD.
基金supported by the National Basic Research Program of China(Project No.2005CB221405)the National "863" Project of China (No.2006AA10Z425)the Beijing Natural Science Foundation (Project No: 8062023)
文摘A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method.The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a continuous flow fixed-bed micro-reactor.The stability of the catalyst was tested at 800 ?C.The results indicated that 10wt%Ni/SBA-15 catalyst exhibited the highest catalytic activities for the combined reforming of the simulated biogas to syngas.Under the reaction conditions of the feed gas molar ratios CH4/CO2/O2/H2O = 2/1/0.6/0.6,GHSV = 24000 ml·gcat^-1·h^-1 and the reaction temperature T = 800 ℃,the conversions of CH4 and CO2 were 92.8% and 76.3%,respectively,and the yields of CO and H2 were 99.0% and 82.0%,respectively.The catalytic activities of the catalyst did not decrease obviously after 100 h reaction time on stream.
基金supported by the earmarked fund for China Agriculture Research System(CARS-36)the National Natural Science Foundation of China(31671327,31701077,31371258)+2 种基金the Program for Changjiang Scholar and Innovation Research Team in University(Grant No.IRT1191)Anhui Science and Technology Key Project(17030701008)Anhui Academy of Agricultural Sciences Key Laboratory Project(18S0404)
文摘In genomic selection, prediction accuracy is highly driven by the size of animals in the reference population(RP).Combining related populations from different countries and regions or using a related population with large size of RP has been considered to be viable strategies in cattle breeding. The genetic relationship between related populations is important for improving the genomic predictive ability. In this study, we used 122 French bulls as test individuals. The genomic estimated breeding values(GEBVs) evaluated using French RP, America RP and Chinese RP were compared.The results showed that the GEBVs were in higher concordance using French RP and American RP compared with using Chinese population. The persistence analysis, kinship analysis and the principal component analysis(PCA) were performed for 270 French bulls, 270 American bulls and 270 Chinese bulls to interpret the results. All the analyses illustrated that the genetic relationship between French bulls and American bulls was closer compared with Chinese bulls. Another reason could be the size of RP in China was smaller than the other two RPs. In conclusion, using RP of a related population to predict GEBVs of the animals in a target population is feasible when these two populations have a close genetic relationship and the related population is large.
基金supported by Yuan Yi Biomass S&T Company of China(No.H2015198)。
文摘In this study,ultrasonic field was applied during potassium hydroxide(KOH) pretreatment of wheat straw(WS).Three concentrations of KOH(2%,4%,and 6%) were tested during pretreatment.The results showed that there was a significant influence of the ultrasonic assisted KOH pretreatment(KOH(Upt)) on physiochemical characteristics of WS during pretreatment as well as on digester performance.The pretreatment time was optimized to 36 h for all KOH concentrations.The highest total volatile fatty acid(TVFA) productions(3189 mg·L^-1) from 6%KOHupt samples were observed.Similarly,the SEM analysis and FTIR observation revealed that KOH(Upt) effectively disrupted the physical morphology of WS and successful breaking of lignin and hemicellulose linkage between carboxyl groups.Moreover,the highest biogasification(555 ml·(g VS(loaded))^-1) and biomethane productions(282 ml·(g VS(loaded))^-1) from 4%KOH(Upt) digesters,with 69% of biodegradability,indicated significant availability of organic matter from KOH(Upt).The R^2 values(0.993-0.998) in Modified Gompertz Model indicated that the model was feasible to predict methane yield for this study.Similarly,the Bo values for 4%KOH(Upt)(283.30±2.74 ml·(gVS(loaded))^-1) were also in agreement to the experimental methane yield.These results suggested that ultrasonic addition during KOH pretreatment of WS can effectively increase the organic yield during pretreatment.Moreover,the increase in methane production from 4% KOH(Upt) suggested that digester performance can be improved with lower KOH concentrations using this pretreatment.
基金Supported by the Special Scientific Research Fund of Agricultural Public Welfare Profession of China(201303099)
文摘Rotating bed can be used in desorption operation of biogas upgrading as a new technology. For enough time to desorb, it is important to study the relationship between the residence time of liquid in rotating bed and the material diffusion time of liquid droplet in desorption process. By theoretical deduction, the exponential relation between residence time and liquid flow rate and rotational speed and kinematic viscosity is obtained. By analyzing the solution of nonlinear partial differential equation, the time law of material diffusion in the droplet is obtained. Moreover, by comparing the residence and diffusion times, the diffusion time can be within or out of residence time range, which has a direct relationship to rotational speed and liquid flow. By experiment, the comparison between residence and diffusion times is more realistic when the rotational speed is higher.
基金the Fundamental Research Funds for the Central Universities(grant numbers JD2006).
文摘The anaerobic digestion(AD)performance of spent cow bedding was investigated with different hydrothermal pretreatment(HP)conditions.Spent cow bedding was pretreated with low temperatures(50,70,and 90℃)and different pretreatment times(2-72 h)with ammonia and without ammonia.The results showed that spent cow bedding was a good raw material for AD.After pretreatment,the concentration of volatile fatty acids(VFAs)in the group of hydrothermal pretreatments with ammonia(HPA)was higher than that in the HP group at the same pretreatment temperature and time.The optimal pretreatment condition was achieved with an HPA of 50℃ holding for 72 h.At the optimal condition,the highest concentration of VFAs was 1.58-10.85 times higher than that of the other pretreated groups.The highest hemicellulose and lignin removal rates were 58.07%and 10.32%,respectively.The highest methane yield was 163.0 ml(g· VS)^(-1),which was 48.9%higher than that of the untreated group.The VFAs,pH,and reducing sugars showed positive relationships with the methane yield.Therefore,HP at low temperature can enhance the AD performance of spent cow bedding.
基金The authors are grateful to the fund supports from National Key Technologies R&D Program of China(2016YFD0501402).
文摘This study proposed an integrated process of Pleurotus ostreatus cultivation,anaerobic digestion of spent mushroom substrate(SMS),and fertilizer value evaluation of digestate for achieving multiple products and full utilization of nutrients in rice straw.The results showed that the cultivated mushroom yield from rice straw was 401 g/kg TS.Biomethane yield obtained from anaerobic digestion of SMS was 133.0 mL/g VS.The fertilizer value of the SMS based digestate reached the national standard of fertilizers from organic sources in China.Substance conversion of rice straw during the integrated process revealed that the process could achieve the full utilization of nutrients in the substrate.Energy assessment indicated that the process had the viability to be applied.Therefore,this study provided a feasible strategy to set up a complete recycling agricultural ecosystem.
基金The authors acknowledge that this work was financially supported by the National Key Technologies R&D Program of China(No.2018YFC1900903).
文摘In this study,the acidification and two-phase anaerobic digestion(AD)were conducted in batch and continuous stirred tank reactors,respectively,to determine the effect of acidification on methane production in AD.The results showed that two-phase AD achieved an observable enhancement in the methane production under optimal acidification conditions(organic loading rate of 60 g TS/L,the ratio of raw material to inoculum(based on dry weight)of 2:1,the temperature of 45℃,urea concentration of 4%,and time of 6 d).Under these conditions,the daily biogas and biomethane productions were 0.48 L/g TS and 0.30 L/g TS,respectively,which were 26.32%and 57.89%higher than those of the untreated group,respectively.The ammonia nitrogen(AN),alkalinity,and pH value of the methanogenic phase of C4 continued to increase up to 956 mg/L,5680 mg/L,and 7.41,respectively,after 60 d,which might have destroyed the stability of the system.Therefore,for the purpose of reusing the nitrogen source,reducing AN,and maintaining the stability of the reaction system,another set of acidification and two-phase AD with water pretreatment using the discharge of the methanogenic phase of C4 as the inoculum was subsequently conducted.The results showed that the daily biogas productions of single-phase and two-phase AD were 5.26%and 15.79%higher than that of the untreated group,respectively;similarly,their daily methane yields were 10.42%and 21.05%higher than that of the untreated group.
基金The work was supported by the Key Project of Chinese Ministry of Education(Grant No.03025).
文摘Reverse osmosis system with the disc-tube mod-ule(DT-RO)was applied to treat landfill leachate on full scale at the Changshengqiao Sanitary Landfill,Chongqing City,China.In the first six-mouth operation phase,the treatment performance of DT-RO system had been excel-lent and stable.The removal rate of chemical oxygen demand(COD),total organic carbon(TOC),electrical con-ductivity(EC),and ammonia nitrogen(NH 3-N)reached 99.2–99.7%,99.2%,99.6%,and over 98%,respectively.The rejection of Ca^(2+),Ba^(2+),and Mg^(2+)was over 99.9%,respectively.Suspended solid(SS)was not detectedin prod-uct water.Effective methods had been adopted to control membrane fouling,of which chemical cleaning is of utmost importance to guarantee the long smooth operation of the DT-ROsystem.The DT-ROsystemiscleanedinturnswith Cleaner A and Cleaner C.At present,the 1st stage cleaning cycle by Cleaner A and Cleaner C is conducted every 100 and500 h,respectively,dependingonrawthewaterquality.
基金We acknowledge that this work was financially support by Special Fund for Agroscientific Research in the Public Interest(No.201503135):Study on Technology and Demonstration of Straw High Efficiency and Clear Energy Utilization.
文摘Sugarcane leaves(SL)pretreated by alkali was used as substrate to enhance biogas production via mesophilic anaerobic digestion(AD)in this study.Effectiveness of different concentrations of NaOH pretreatment on AD performance was investigated.Results showed that compared to untreated sample of SL,the lignocellulose(LCH)content of NaOH pretreated group was decreased by 5.79%-16.85%.However,the cumulative biogas production of the pretreated samples increased in the range of 34.54%-82.67%;moreover,T90 was shorten by 5-7 d.The highest anaerobic digestibility of SL was achieved at 6%NaOH pretreatment,which produced 287.30 mL/g TS of biogas.A significant interactive effect of the three parameters(temperature,SL/manure mixing ratio and C/N ratio)was found on the biogasification of anaerobic co-digestion,and a maximum biogas production was achieved at 36.2oC,mixing ratio of 1.6 and C/N ratio of 29.2.These show that the verification experiment confirmed the optimization results.This study provides meaningful insight for exploring efficient pretreatment strategy and optimal condition to stabilize and enhance AD performance for practical application.