As we are facing an aging society,anti-aging strategies have been pursued to reduce the negative impacts of aging and increase the health span of human beings.Gut microbiota has become a key factor in the anti-aging p...As we are facing an aging society,anti-aging strategies have been pursued to reduce the negative impacts of aging and increase the health span of human beings.Gut microbiota has become a key factor in the anti-aging process.Modulation of gut microbiota by fecal microbiota transplantation(FMT)to prevent frailty and unhealthy aging has been a hot topic of research.This narrative review summarizes the benefits of FMT for health span and lifespan,brains,eyes,productive systems,bones,and others.The mechanisms of FMT in improving healthy aging are discussed.The increased beneficial bacteria and decreased pathological bacteria decreased gut permeability and systemic inflammation,increased short-chain fatty acid(SCFA)and SCFA-producing bacteria,and other factors are listed as mechanisms of FMT to improve healthy aging.The points that need to be considered to ensure the optimal outcomes of FMT are also discussed,such as recipients’age,sex,genetic background,and gut microbiota after FMT.Although thisfield is still in its infancy,it has shown that FMT has great potential to improve healthy aging.展开更多
Although biomimetic hydrogels play an essential role in guiding bone remodeling,reconstructing large bone defects is still a significant challenge since bioinspired gels often lack osteoconductive capacity,robust mech...Although biomimetic hydrogels play an essential role in guiding bone remodeling,reconstructing large bone defects is still a significant challenge since bioinspired gels often lack osteoconductive capacity,robust mechanical properties and suitable antioxidant ability for bone regeneration.To address these challenges,we first engineered molecular design of hydrogels(gelatin/polyethylene glycol diacrylate/2-(dimethylamino)ethyl methacrylate,GPEGD),where their mechanical properties were significantly enhanced via introducing trace amounts of additives(0.5 wt%).The novel hybrid hydrogels show high compressive strength(>700 kPa),stiff modulus(>170 kPa)and strong ROS-scavenging ability.Furthermore,to endow the GPEGD hydrogels excellent osteoinductions,novel biocompatible,antioxidant and BMP-2 loaded polydopamine/heparin nanoparticles(BPDAH)were developed for functionalization of the GPEGD gels(BPDAH-GPEGD).In vitro results indicate that the antioxidant BPDAH-GPEGD is able to deplete elevated ROS levels to protect cells viability against ROS damage.More importantly,the BPDAH-GPEGD hydrogels have good biocompatibility and promote the osteo differentiation of preosteoblasts and bone regenerations.At 4 and 8 weeks after implantation of the hydrogels in a mandibular bone defect,Micro-computed tomography and histology results show greater bone volume and enhancements in the quality and rate of bone regeneration in the BPDAH-GPEGD hydrogels.Thus,the multiscale design of stiffening and ROS scavenging hydrogels could serve as a promising material for bone regeneration applications.展开更多
基金This work was sponsored by Natural Science Foundation of Chongqing,China(cstc2021jcyjbshX0176 to Ting Gong)National Natural Science Foundation of China(81900980 to Huifen Ding).
文摘As we are facing an aging society,anti-aging strategies have been pursued to reduce the negative impacts of aging and increase the health span of human beings.Gut microbiota has become a key factor in the anti-aging process.Modulation of gut microbiota by fecal microbiota transplantation(FMT)to prevent frailty and unhealthy aging has been a hot topic of research.This narrative review summarizes the benefits of FMT for health span and lifespan,brains,eyes,productive systems,bones,and others.The mechanisms of FMT in improving healthy aging are discussed.The increased beneficial bacteria and decreased pathological bacteria decreased gut permeability and systemic inflammation,increased short-chain fatty acid(SCFA)and SCFA-producing bacteria,and other factors are listed as mechanisms of FMT to improve healthy aging.The points that need to be considered to ensure the optimal outcomes of FMT are also discussed,such as recipients’age,sex,genetic background,and gut microbiota after FMT.Although thisfield is still in its infancy,it has shown that FMT has great potential to improve healthy aging.
基金supported by the,National Science Fund for Distinguished Young Scholars of China(Grant No.81825005)Natural Science Foundation of China(Grant No.81702162)Sichuan International Science and Technology Innovation Cooperation Project of Hong Kong,Macao and Taiwan(Grant No.2021YFH0185).
文摘Although biomimetic hydrogels play an essential role in guiding bone remodeling,reconstructing large bone defects is still a significant challenge since bioinspired gels often lack osteoconductive capacity,robust mechanical properties and suitable antioxidant ability for bone regeneration.To address these challenges,we first engineered molecular design of hydrogels(gelatin/polyethylene glycol diacrylate/2-(dimethylamino)ethyl methacrylate,GPEGD),where their mechanical properties were significantly enhanced via introducing trace amounts of additives(0.5 wt%).The novel hybrid hydrogels show high compressive strength(>700 kPa),stiff modulus(>170 kPa)and strong ROS-scavenging ability.Furthermore,to endow the GPEGD hydrogels excellent osteoinductions,novel biocompatible,antioxidant and BMP-2 loaded polydopamine/heparin nanoparticles(BPDAH)were developed for functionalization of the GPEGD gels(BPDAH-GPEGD).In vitro results indicate that the antioxidant BPDAH-GPEGD is able to deplete elevated ROS levels to protect cells viability against ROS damage.More importantly,the BPDAH-GPEGD hydrogels have good biocompatibility and promote the osteo differentiation of preosteoblasts and bone regenerations.At 4 and 8 weeks after implantation of the hydrogels in a mandibular bone defect,Micro-computed tomography and histology results show greater bone volume and enhancements in the quality and rate of bone regeneration in the BPDAH-GPEGD hydrogels.Thus,the multiscale design of stiffening and ROS scavenging hydrogels could serve as a promising material for bone regeneration applications.