The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilic...The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tujl, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities.展开更多
Hypoxic-ischemic brain damage(HIBD)is a common cause of infant death.The purpose of our research was to explore the immunoregulatory mechanism of placenta-derived mesenchymal stem cells(PD-MSCs)in HIBD treatment.Seven...Hypoxic-ischemic brain damage(HIBD)is a common cause of infant death.The purpose of our research was to explore the immunoregulatory mechanism of placenta-derived mesenchymal stem cells(PD-MSCs)in HIBD treatment.Seven-day-old rat pups were randomly divided into HIBD,PD-MSC,fibroblast,and control groups.Forty-eight hours after HIBD induction,cells at a density of 5×104 cells/10µl were injected into the cerebral tissue in the PD-MSC and fibroblast groups.The TNF-α,interleukin-17(IL-17),interferon-γ(IFN-γ),and IL-10 levels were detected through quantitative real-time polymerase chain reaction(RT-PCR)and enzyme-linked immunosorbent assay(ELISA).Regulatory T cell(Tregs)populations were detected through flow cytometry,and forkhead box P3(Foxp3)was measured through western blot analysis.Behavioral tests and gross and pathological examinations showed that PD-MSC treatment exerted significantly stronger neuroprotective effects than the other treatments.The expression levels of pro-inflammatory cytokines were substantially upregulated after HI injury.Compared with fibroblast treatment,PD-MSC treatment inhibited the production of pro-inflammatory cytokines and increased the production of IL-10 in the ischemic hemispheres and peripheral blood serum(all P<0.01).Flow cytometry results showed a notable increase in the number of Tregs within the spleen of the HIBD group.Moreover,the number of Tregs and the Foxp3 expression levels were higher in the PD-MSC treatment group than in the HIBD and fibroblast groups(all P<0.01).Our research suggests that the mechanism of PD-MSC treatment for HIBD partially involves inflammatory response suppression.展开更多
基金supported by grants from the Shandong Province Science and Technology Program, GrantNo.2011GSF11801the Innovation Fund Project of Shandong University, Grant No.2012ZD023the Major StateBasic Research Development Program, Grant No.2012CB966504
文摘The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tujl, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities.
基金supported by grants from the Dongying City Technology Development Project(Grant No.2011106).
文摘Hypoxic-ischemic brain damage(HIBD)is a common cause of infant death.The purpose of our research was to explore the immunoregulatory mechanism of placenta-derived mesenchymal stem cells(PD-MSCs)in HIBD treatment.Seven-day-old rat pups were randomly divided into HIBD,PD-MSC,fibroblast,and control groups.Forty-eight hours after HIBD induction,cells at a density of 5×104 cells/10µl were injected into the cerebral tissue in the PD-MSC and fibroblast groups.The TNF-α,interleukin-17(IL-17),interferon-γ(IFN-γ),and IL-10 levels were detected through quantitative real-time polymerase chain reaction(RT-PCR)and enzyme-linked immunosorbent assay(ELISA).Regulatory T cell(Tregs)populations were detected through flow cytometry,and forkhead box P3(Foxp3)was measured through western blot analysis.Behavioral tests and gross and pathological examinations showed that PD-MSC treatment exerted significantly stronger neuroprotective effects than the other treatments.The expression levels of pro-inflammatory cytokines were substantially upregulated after HI injury.Compared with fibroblast treatment,PD-MSC treatment inhibited the production of pro-inflammatory cytokines and increased the production of IL-10 in the ischemic hemispheres and peripheral blood serum(all P<0.01).Flow cytometry results showed a notable increase in the number of Tregs within the spleen of the HIBD group.Moreover,the number of Tregs and the Foxp3 expression levels were higher in the PD-MSC treatment group than in the HIBD and fibroblast groups(all P<0.01).Our research suggests that the mechanism of PD-MSC treatment for HIBD partially involves inflammatory response suppression.