期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Selective conversion of syngas to propane over ZnCrO_x-SSZ-39 OX-ZEO catalysts 被引量:7
1
作者 Gen Li Feng Jiao +8 位作者 Dengyun Miao Yong Wang xiulian pan Toshiyuki Yokoi Xiangju Meng Feng-Shou Xiao Andrei-Nicolae Parvulescu Ulrich Müller Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期141-147,共7页
Oxide-Zeolite(OX-ZEO) bifunctional catalyst design concept has been exemplified in several processes to direct conversion syngas to value-added chemicals and fuels such as mixed light olefins, ethylene, aromatics and ... Oxide-Zeolite(OX-ZEO) bifunctional catalyst design concept has been exemplified in several processes to direct conversion syngas to value-added chemicals and fuels such as mixed light olefins, ethylene, aromatics and gasoline.Herein we demonstrate that the product can be steered toward liquefied petroleum gas(LPG) with a selectivity up to 89% in hydrocarbons especially propane selectivity reaching 80% at CO conversion of 63% using ZnCrOx-H-SSZ-39 catalyst.Interestingly, the quantity of the acid sites of SSZ-39 does not influence obviously the hydrocarbon distribution but the strength is crucial for selective formation of propane.This finding provides an alternative route of LPG synthesis from a variety of carbon resources via syngas. 展开更多
关键词 SYNGAS CONVERSION Liquefied petroleum gas (LPG) PROPANE Zeolites SSZ-39 OX-ZEO BIFUNCTIONAL CATALYSTS
下载PDF
The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts 被引量:4
2
作者 Qinqin Yu Tie Yu +3 位作者 Hongyu Chen Guangzong Fang xiulian pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期93-99,共7页
The effect of the Al2O3 structure on the performance of Pt/Ga/Al2O3 catalysts is investigated for the direct dehydrogenation of propane. The study unveils that the structure of Al3+determines the bulk structure of cat... The effect of the Al2O3 structure on the performance of Pt/Ga/Al2O3 catalysts is investigated for the direct dehydrogenation of propane. The study unveils that the structure of Al3+determines the bulk structure of catalysts, particularly a high content of coordinatively unsaturated Al3+sites(penta-coordinated Al3+,denoted as Al3+penta) could lead to a remarkably improved dehydrogenation activity of the catalyst. The bulk characterization reveals that the sufficient amount of Al3+pentain Al2O3 benefit the dispersion of Pt and Ga2O3 on the Al2O3 support. At the same time, TPR results reveal that the presence of Pt facilitates the reduction of Ga2O3, likely due to the hydrogen spillover between the well dispersed Pt and Ga2O3,which consequently enhances the synergistic function between Pt and Ga2O3 in the dehydrogenation of propane. Recyclability tests demonstrate that the dehydrogenation activity stabilizes after three cycles over the Pt/Ga/Al2O3 catalyst. 展开更多
关键词 DEHYDROGENATION GA2O3 AL2O3 Coordinatively unsaturated
下载PDF
Effect of pH on the catalytic performance of PtSn/B-ZrO2 in propane dehydrogenation 被引量:3
3
作者 Zhonghai Ji Dengyun Miao +2 位作者 Lijun Gao xiulian pan Xinhe Bao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第4期719-729,共11页
Boron-modified ZrO2(B-ZrO2)was synthesized under various pH values(9,10,and 11)and used as the supports of PtSn catalysts(PtSn/B-ZrO2-x)for non-oxidative dehydrogenation of propane.The NH3-TPD and pyridine IR show tha... Boron-modified ZrO2(B-ZrO2)was synthesized under various pH values(9,10,and 11)and used as the supports of PtSn catalysts(PtSn/B-ZrO2-x)for non-oxidative dehydrogenation of propane.The NH3-TPD and pyridine IR show that only Lewis acid is present and the acid strength increases with the synthesis pH.PtSn/B-ZrO2-10 exhibits the best catalytic performance with an initial propane conversion of 36%and a deactivation rate constant(kd)of 0.0127 h^-1.The XPS results indicate that the electronic properties of Pt and SnOx are affected not only by their interaction but also by the interaction with support.After a careful analysis of the oxygen storage capacity and activity in CO oxidation,it is hypothesized that the interaction between Pt and Sn becomes stronger following the order:PtSn/B-ZrO2-9<PtSn/B-ZrO2-11<PtSn/B-ZrO2-10.The characterization with TPO and Raman on spent catalysts exhibits that more hydrogen deficient coke forms on the support and less coke deposits on the metal surface of PtSn/B-ZrO2-10.The results reveal that the interaction between Pt and Sn is influenced by their respective interaction with the support and a moderate interaction between the metal species and the support is desired. 展开更多
关键词 Propane dehydrogenation Platinum-tin PROPYLENE SUPPORT Stability
下载PDF
Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion 被引量:11
4
作者 Junhao Yang Ke Gong +5 位作者 Dengyun Miao Feng Jiao xiulian pan Xiangju Meng Fengshou Xiao Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期44-48,I0003,共6页
Aromatics are important basic chemicals. However, direct conversion of syngas via the conventional Fischer-Tropsch synthesis produces little aromatics. We presented herein that a bifunctional composite of ZSM-5 in com... Aromatics are important basic chemicals. However, direct conversion of syngas via the conventional Fischer-Tropsch synthesis produces little aromatics. We presented herein that a bifunctional composite of ZSM-5 in combination with Zn Cr Oxcatalyzes syngas conversion to aromatics. Particularly, ZSM-5 crystals with a sheet-like morphology can enhance significantly the aromatization activity. The lower length ratio of the b/a axes of the crystals, the more aromatics form but without influencing the selectivity of small molecules such as CH4 and C2–C4. Since the acid properties and the Al chemical environment were not altered while the morphology changed, the enhanced aromatic selectivity is likely attributed to the favored diffusion of aromatics in these sheet-like crystals. 展开更多
关键词 Synthesis gas AROMATICS BIFUNCTIONAL OX-ZEO catalyst ZEOLITE Morphology
下载PDF
Nitrogen doped carbon catalyzing acetylene conversion to vinyl chloride 被引量:12
5
作者 Xingyun Li xiulian pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期131-135,共5页
Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vi... Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vital to explore alternative catalysts without mercury. We report here that N-doped carbon can catalyze directly transformation of acetylene to vinyl chloride. Particularly, N-doped high surface area mesoporous carbon exhibits a rather high activity with the acetylene conversion reaching 77% and vinyl chloride selectivity above 98% at a space velocity of 1.0 mL.min-l.g-1 and 200 ~C. It delivers a stable performa℃nce within a test period of 100h and no obvious deactivation is observed, demonstrating potentials to substitute the notoriously toxic mercuric chloride catalyst. 展开更多
关键词 ACETYLENE HYDROCHLORINATION vinyl chloride MERCURY-FREE N doped carbon
下载PDF
Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes 被引量:7
6
作者 Tingting Cui Jinhu Dong +3 位作者 xiulian pan Tie Yu Qiang Fu Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期123-127,共5页
Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the ... Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance. 展开更多
关键词 SINGLE-WALLED carbon NANOTUBES CONFINED catalysis Molybdenum CARBIDE NANOPARTICLES Hydrogen evolution reaction
下载PDF
Confinement effect of carbon nanotubes on the product distribution of selective hydrogenation of cinnamaldehyde 被引量:7
7
作者 Hongfei Ma Tie Yu +1 位作者 xiulian pan Xinhe Bao 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1315-1321,共7页
The catalytic activity of metal catalysts can be modulated by confinement within the channels of carbon nanotubes(CNTs).Here,we show that the product distribution of cinnamaldehyde hydrogenation can be modified by con... The catalytic activity of metal catalysts can be modulated by confinement within the channels of carbon nanotubes(CNTs).Here,we show that the product distribution of cinnamaldehyde hydrogenation can be modified by confinement of Ru nanoparticles in CNTs.A catalyst composed of Ru nanoparticles dispersed on the exterior walls of CNTs gave hydrocinnamaldehyde as product.In contrast,confinement of the Ru nanoparticles within CNT channels facilitated hydrogenation of C=O bonds and complete hydrogenation,and both cinnamyl alcohol and hydrocinnamyl alcohol formed in addition to hydrocinnamaldehyde.High‐resolution transmission electron microscopy,Raman spectroscopy,hydrogen temperature‐programmed reduction,and hydrogen temperature‐programmed desorption were used to investigate the characteristics of the catalysts.The results indicate that the different interactions between the confined Ru nanoparticles and the exterior and interior walls of the CNTs,as well as spatial restriction and enrichment within the narrow channels likely play important roles in modulation of the product distribution. 展开更多
关键词 Carbon nanotubes Confined catalysis RUTHENIUM Selective hydrogenation CINNAMALDEHYDE Selectivity modulation
下载PDF
Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane 被引量:3
8
作者 Dunfeng Gao Fan Cai +3 位作者 Qinqin Xu Guoxiong Wang xiulian pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第6期694-700,共7页
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el... Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst. 展开更多
关键词 carbon dioxide gas-phase electrocatalytic reduction platinum-molybdenum catalyst Faradaic efficiency formation rate
下载PDF
Facile filling of metal particles in small carbon nanotubes for catalysis 被引量:3
9
作者 Hongbo Zhang xiulian pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期251-256,共6页
A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catal... A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catalyst exhibit a higher benzene hydroxylation activity compared with that within multi-walled carbon nanotubes. 展开更多
关键词 double-walled carbon nanotubes (DWCNTs) single-walled carbon nanotubes (SWCNTs) nanoparticles wet chemistry benzene hydroxyla-tion
下载PDF
Growth of Cu/SSZ-13 on SiC for selective catalytic reduction of NO with NH_3 被引量:3
10
作者 Tiaoyun Zhou Qing Yuan +1 位作者 xiulian pan Xinhe Bao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期71-78,共8页
Silicon carbide(SiC)was used as a support for SSZ‐13zeolite in an attempt to improve the high‐temperature stability and activity of Cu/SSZ‐13in the selective catalytic reduction(SCR)of NO with NH3.SSZ‐13was grown ... Silicon carbide(SiC)was used as a support for SSZ‐13zeolite in an attempt to improve the high‐temperature stability and activity of Cu/SSZ‐13in the selective catalytic reduction(SCR)of NO with NH3.SSZ‐13was grown via a hydrothermal method using the silicon and silica contained in SiC as the source of silicon,which led to the formation of a chemically bonded SSZ‐13layer on SiC.Characterization using X‐ray diffraction,scanning electron microscopy,and N2adsorption‐desorption isotherms revealed that the alkali content strongly affected the purity of zeolite and the crystallization time affected the coverage and crystallinity of the zeolite layer.Upon ion exchange,the resulting Cu/SSZ‐13@SiC catalyst exhibited enhanced activity in NH3‐SCR in the high‐temperature region compared with the unsupported Cu/SSZ‐13.Thus,the application temperature was extended with the use of SiC as the support.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 ZEOLITE SSZ‐13 Silicon carbide Selective catalytic reduction by AMMONIA
下载PDF
Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction 被引量:3
11
作者 Jianqi Hao Pierre Schwach +10 位作者 Lulu Li Xiaoguang Guo Junben Weng Hailei Zhang Hao Shen Guangzong Fang Xin Huang xiulian pan Chunlei Xiao Xueming Yang Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期372-376,I0012,共6页
Non-oxidative conversion of methane to olefins,aromatics and hydrogen(MTOAH) has been reported recently over metal single sites such as iron and platinum.The reaction was proposed to involve catalytic activation of me... Non-oxidative conversion of methane to olefins,aromatics and hydrogen(MTOAH) has been reported recently over metal single sites such as iron and platinum.The reaction was proposed to involve catalytic activation of methane followed by gas phase C-C coupling of methyl radicals.This study using H atom Rydberg Tagging time-of-flight technique provides direct experimental evidence for the formation of hydrogen radicals during MTOAH reaction over a catalytic quartz wall reactor containing embedded iron species(denoted as Fe-reactor).Fe-reactor gives 7.3% methane conversion at 1273 K with 41.2% selectivity toward C2(ethane,ethylene and acetylene) and 31.8% toward BTX(benzene,toluene and xylene),respectively.The enhancing effects of hydrogen radicals on overall MTOAH performance are validated by cofeeding hydrogen donor benzene,which provides an additional route of methane activation apart from catalytic activation. 展开更多
关键词 Non-oxidative methane conversion Catalytic Fe-reactor H radical Experimental detection Methane activation
下载PDF
Selectivity modulation in the consecutive hydrogenation of benzaldehyde via functionalization of carbon nanotubes 被引量:2
12
作者 Yonghua Zhou Jing Liu +2 位作者 Xingyun Li xiulian pan Xinhe Bao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期241-245,共5页
Hydrogenation of benzaldehyde is a typical consecutive reaction, since the intermediate benzyl alcohol is apt to be further hydrogenated. Here we demonstrate that the selectivity of benzyl alcohol can be tuned via fun... Hydrogenation of benzaldehyde is a typical consecutive reaction, since the intermediate benzyl alcohol is apt to be further hydrogenated. Here we demonstrate that the selectivity of benzyl alcohol can be tuned via functionalization of carbon nanotubes (CNTs), which are used as the support of Pd. With the original CNTs, the selectivity of benzyl alcohol is 88% at a 100% conversion of benzaldehyde. With introduction of oxygen-containing groups onto CNTs, it drops to 27%. In contrast, doping CNTs with N atoms, the selectivity reaches 96% under the same reaction conditions. The kinetic study shows that hydrogenation of benzyl alcohol is significantly suppressed, which can be attributed to weakened adsorption of benzyl alcohol. This is most likely related to the modified electronic structure of Pd species via interaction with functionalized CNTs, as shown by XPS characterization. 展开更多
关键词 BENZALDEHYDE benzyl alcohol HYDROGENATION consecutive reaction N-doped carbon nanotube PALLADIUM
下载PDF
A highly active and stable Pd/B-doped carbon catalyst for the hydrogenation of 4-carboxybenzaldehyde 被引量:1
13
作者 Kai Tie xiulian pan +3 位作者 Tie Yu pan Li Limin He Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期154-158,共5页
Boron had been introduced into the structure of carbon material(BC), which was used as the support of Pd catalyst for hydrogenation of 4-carboxybenzaldehyde(4-CBA). The physical properties and chemical composition of ... Boron had been introduced into the structure of carbon material(BC), which was used as the support of Pd catalyst for hydrogenation of 4-carboxybenzaldehyde(4-CBA). The physical properties and chemical composition of the support and corresponding catalyst were characterized by N2 adsorption–desorption,Raman spectroscopy, inductively coupled plasma optical emission spectroscopy(ICP-OES), element analysis(EA), high-resolution transmission electron microscopy(HRTEM), CO-pulse chemisorption and X-ray photoelectron spectroscopy(XPS). The results demonstrate that Pd/BC catalyst exhibits a superior activity and good stability due to the more uniform dispersion of Pd nanoparticles, the presence of mesoporous structure and the enhanced interaction between Pd nanoparticles and the support, compared to carbon and N-doped carbon supported Pd catalysts(Pd/C and Pd/NC, respectively). 展开更多
关键词 Heteroatom-doped carbon PALLADIUM CATALYTIC HYDROGENATION
下载PDF
Probing active species for CO hydrogenation over ZnCr_(2)O_(4) catalysts 被引量:1
14
作者 Yunjian Ling Yihua Ran +7 位作者 Weipeng Shao Na Li Feng Jiao xiulian pan Qiang Fu Zhi Liu Fan Yang Xinhe Bao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2017-2025,共9页
Oxide catalysts are increasingly employed for hydrogenation reactions,among which ZnCrOx is a major catalyst for the oxide-zeolite(OXZEO)process and for the hydrogenation of C1 molecules in general.Owing to the comple... Oxide catalysts are increasingly employed for hydrogenation reactions,among which ZnCrOx is a major catalyst for the oxide-zeolite(OXZEO)process and for the hydrogenation of C1 molecules in general.Owing to the complex nature of ternary oxides,the surface and catalytic properties of ZnCr_(2)O_(4) spinel have remained controversial for CO hydrogenation.Combining in-situ Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy,we examined the adsorption and reaction of CO/H_(2) on the ZnCr_(2)O_(4) catalysts,which were pre-treated under oxidative or reductive conditions.The reduced ZnCr_(2)O_(4) catalyst was found to expose more surface sites for CO adsorption/reaction than the oxidized ZnCr_(2)O_(4) catalyst.Exposing the reduced ZnCr_(2)O_(4) to H_(2) at room temperature led to the formation of surface hydride species,which would transform into hydroxyl species at elevated temperatures.The reduced ZnCr_(2)O_(4) surface exhibited much stronger interaction with CO and H_(2) than ZnO and Cr_(2)O_(3).Exposing the reduced ZnCr_(2)O_(4) to the CO and H_(2)(1:1)mixture gas led to the hydrogenation of CO.However,CO was oxidized by the hydroxyl species via the water-gas-shift reaction,whereas the hydrogenation of CO could only be achieved by surface hydride species on the reduced ZnCr_(2)O_(4) to formyl or formate species at 373-473 K.Our study has thus shed light on the active species that control elementary reaction process of CO hydrogenation on complex oxide surfaces. 展开更多
关键词 ZnCr_(2)O_(4) Fourier-transformed infrared spectroscopy CO adsorption HYDRIDE HYDROXYL
下载PDF
Modulated hydrocarbon distribution of gasoline deriving from butene conversion in the presence of syngas
15
作者 Yi Ding Feng Jiao +1 位作者 xiulian pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期416-421,I0010,共7页
With the expansion of butene production capacity,clean and efficient conversion of mixed butene attracts increasing attention.Herein we report direct co-conversion of butene and syngas to highquality gasoline enabled ... With the expansion of butene production capacity,clean and efficient conversion of mixed butene attracts increasing attention.Herein we report direct co-conversion of butene and syngas to highquality gasoline enabled by a bifunctional OXZEO catalyst comprising ZnCrO_(x) oxide and ZSM-5 zeolite.A gasoline selectivity of 71.6% at 98.1% butene conversion and 26.2% CO conversion have been obtained under the reaction conditions of 360℃,3 MPa and 3000 mL g^(-1) h^(-1).The space time yield of gasoline of0.25 g·g^(-1) h^(-1) is achieved.Interestingly,the presence of syngas can effectively facilitate iso-paraffin production while hindering the formation of aromatics.This is attributed to the prohibited hydrogen transfer aromatization process of butene on ZSM-5 in the presence of H2.Fu rthermore,the formation of isomers of gasoline range hydrocarbons is favored because the active intermediates generated from CO/H_(2) activation over ZnCrO_(x) oxide could react with butene over ZSM-5 zeolite.Thus,the product distribution among gasoline range hydrocarbons is modulated with reduced heavy aromatics and improved iso-paraffins,which is desirable for application as fuels.This provides an alternative environmentally friendly technology to utilize still increasing mixed butene. 展开更多
关键词 Butene utilization Bifunctional catalysts OXZEO Syngas conversion GASOLINE
下载PDF
Modulating the CO methanation activity of Ni catalyst by nitrogen doped carbon
16
作者 Yaping Lin pan Li +2 位作者 Tingting Cui xiulian pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期898-902,共5页
Nitrogen doping has been proved to be an effective way to modify the properties of graphene and other carbon materials. Herein, we explore a composite with nitrogen doped carbon overlayers wrapping Si C substrate as a... Nitrogen doping has been proved to be an effective way to modify the properties of graphene and other carbon materials. Herein, we explore a composite with nitrogen doped carbon overlayers wrapping Si C substrate as a support for Ni(Ni/CN-Si C) and evaluate its effects on the methanation activity. The results show that both the activity and stability of Ni are enhanced. Characterization with STEM, XRD, XPS, Raman and H2-TPR indicates that nitrogen doping generates more defects in the carbon overlayers, which benefit the dispersion of Ni. Furthermore, the reduction of Ni is facilitated. 展开更多
关键词 CO methanation Ni catalyst Carbon Nitrogen doping SiC
下载PDF
SAPO-34 facilitates the formation of benzene,toluene and xylenes in direct syngas conversion over MnCrO_(x)-SAPO-34-ZSM-5 被引量:2
17
作者 Shuchi Zhang Dengyun Miao +5 位作者 Yi Ding Mengyuan Li Shujing Guo Yujuan Zhang xiulian pan Xinhe Bao 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第2期732-740,共9页
Direct conversion of syngas to aromatics over metal oxide and zeolite(OXZEO) composite catalysts is promising.However,the selectivity of more valuable products such as benzene,toluene and xylenes(BTX) is limited due t... Direct conversion of syngas to aromatics over metal oxide and zeolite(OXZEO) composite catalysts is promising.However,the selectivity of more valuable products such as benzene,toluene and xylenes(BTX) is limited due to undesired secondary methylation of BTX.Herein,we report that the introduction of SAPO-34 into MnCrO_(x)-ZSM-5 catalyst enhances significantly the formation of BTX without sacrificing the aromatics selectivity.Under optimized conditions,the fraction of BTX in aromatics reaches 64.7% versus 28.9% over the catalyst without SAPO-34.A number of model reaction tests and characterizations reveal that SAPO-34 consumes partially the intermediates such as ketene,by converting them to light olefins.Thus,the methylation of BTX by ketene to heavy aromatics is inhibited over the external acid sites of ZSM-5,leading to an enhanced BTX selectivity in the products.This hybrid catalyst provides an efficient method for highly selective synthesis of BTX from syngas. 展开更多
关键词 selective syngas conversion OXZEO AROMATICS BTX multi-functional catalysts
原文传递
The activity and stability of PdCl_2/C-N catalyst for acetylene hydrochlorination 被引量:3
18
作者 pan Li Minzheng Ding +4 位作者 Limin He Kai Tie Hao Ma xiulian pan Xinhe Bao 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第4期444-448,共5页
Carbon supported PdCl_2 is highly active in catalyzing acetylene hydrochlorination reaction, but deactivates rather quickly. Upon nitrogen doping in the carbon structure, the stability of the PdCl_2 catalysts is signi... Carbon supported PdCl_2 is highly active in catalyzing acetylene hydrochlorination reaction, but deactivates rather quickly. Upon nitrogen doping in the carbon structure, the stability of the PdCl_2 catalysts is significantly improved. Furthermore, the results show that 900 ℃ is a preferred doping temperature. The acetylene conversion keeps above 90% even after 1200 min time on stream whereas the one without nitrogen doping drops to below 10% after 450 min. The stabilizing mechanism of nitrogen doping on catalyst was studied. 展开更多
关键词 acetylene hydrochlorination nitrogen doping palladium chloride mercury-free catalyst STABILITY
原文传递
A versatile method for the encapsulation of various non-precious metal nanoparticles inside single-walled carbon nanotubes 被引量:2
19
作者 Tingting Cui xiulian pan +3 位作者 Jinhu Dong Shu Miao Dengyun Miao Xinhe Bao 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3132-3144,共13页
We present a facile and versatile method for introducing various non-precious metal nanoparticles (NPs) in small nanotubes, such as single-walled carbon nanotubes (SWNTs), including 3d-metals (V, Mn, Fe and Co),... We present a facile and versatile method for introducing various non-precious metal nanoparticles (NPs) in small nanotubes, such as single-walled carbon nanotubes (SWNTs), including 3d-metals (V, Mn, Fe and Co), 4d-metals (Mo), and 5d-metals (W). This is realized by oxidizing encapsulated cycloalkene metal carbonyl complexes below their sublimation temperatures. This novel technique is significant because it avoids the diffusion and deposition of metal species on the outer walls of nanotubes, which has been challenging to achieve using the conventional filling methods. High-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and X-ray photoelectron spectroscopy (XPS) analyses revealed high filling efficiencies (〉 95% SWNTs filled with metal NPs). This method also provides a unique approach to fabricate highly dispersed and uniform SWNT-metal nanoparficle encapsulates with lower valence states, which are often not stable in the bulk. 展开更多
关键词 single-walled carbon nanotubes ENCAPSULATION non-precious metals confinement effect NANOPARTICLES
原文传递
The role of water in methane adsorption and diffusion within nanoporous silica investigated by hyperpolarized 129Xe and 1H PFG NMR spectroscopy
20
作者 Yuanli Hu Mingrun Li +6 位作者 Guangjin Hou Shutao Xu Ke Gong Xianchun Liu Xiuwen Han xiulian pan Xinhe Bao 《Nano Research》 SCIE EI CAS CSCD 2018年第1期360-369,共10页
Understanding the properties and behavior of water molecules in restricted geometries, such as the nanopores of rocks, is of interest for shale gas exploitation. We present herein ex situ and in situ nuclear magnetic ... Understanding the properties and behavior of water molecules in restricted geometries, such as the nanopores of rocks, is of interest for shale gas exploitation. We present herein ex situ and in situ nuclear magnetic resonance (NMR) studies on the effects of water on the adsorption and diffusion of methane in nanopores. Silica materials with one-dimensional pores of ZSM-22, MCM-41, and SBA-15, with pore sizes ranging from 0.5 to 6 nm, were chosen as models. Hyperpolarized (HP) 129Xe NMR results show that water adsorption does not affect the pore sizes of ZSM-22 and MCM-41 but reduces that of SBA-15. The presence of water suppresses methane adsorption; this suppression effect is stronger in smaller pores. The self-diffusion coefficients of methane within ZSM-22 and MCM-41 are not significantly influenced by the presence of water, as measured by ~H pulsed field gradient (PFG) NMR. However, within SBA-15, which has a pore size of 6 nm, the diffusion coefficient of methane increases as the amount of water adsorption increases, peaks, and then decreases to a constant value with further water adsorption. These experiments reveal the effects of the pore size and the presence of water on methane adsorption and diffusion in constrained spaces, which could have important implications for flow simulations of methane in shales. 展开更多
关键词 water adsorption NANOPORES DIFFUSION hyperpolarized 129Xe nuclear magnetic resonance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部