With the increasing interest in the application of electrochromism to flexible and wearable electronics in recent years,flexible electrochromic devices(ECDs)that can function at extreme temperatures are required.Howev...With the increasing interest in the application of electrochromism to flexible and wearable electronics in recent years,flexible electrochromic devices(ECDs)that can function at extreme temperatures are required.However,the functionalities of flexible ECDs are severely hampered by the inadequate choice of electrolytes,which might ultimately result in performance fading during low-and high-temperature operations.Here,we develop a deep eutectic solvent(DES)-based gel electrolyte that can maintain its optical,electrical,and mechanical properties over a wide range of temperatures(-40 to 150℃),exhibiting an extremely high visible-range transmittance over 90%,ion conductivity of 0.63 mS cm^(-1),and fracture strain exceeding 2000%.Owing to the excellent processability of the DES-based electrolytes,provided by dynamic interactions such as the lithium and hydrogen bonding between the DES and polymer matrix,a directly written patterning in ECDs is realized for the first time.The fabricated ECDs exhibit an excellent electrochromic behavior superior to the behavior of the ECDs fabricated with traditional gel electrolytes.The introduction of such DES-based electrolytes is expected to pave the way for a widespread application of electrochromic products.展开更多
基金External Cooperation Program of the Chinese Academy of Sciences,Grant/Award Number:121E32KYSB20190008National Natural Science Foundation of China,Grant/Award Numbers:22175198,51972331,52172299+3 种基金Outstanding Youth Fund of Jiangxi,Grant/Award Number:20192BCBL23027Six Talent Peaks Project in Jiangsu Province,Grant/Award Number:XCL-170the National Key Research and Development Program of China,Grant/Award Number:2020YFB1505703Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:2018356.
文摘With the increasing interest in the application of electrochromism to flexible and wearable electronics in recent years,flexible electrochromic devices(ECDs)that can function at extreme temperatures are required.However,the functionalities of flexible ECDs are severely hampered by the inadequate choice of electrolytes,which might ultimately result in performance fading during low-and high-temperature operations.Here,we develop a deep eutectic solvent(DES)-based gel electrolyte that can maintain its optical,electrical,and mechanical properties over a wide range of temperatures(-40 to 150℃),exhibiting an extremely high visible-range transmittance over 90%,ion conductivity of 0.63 mS cm^(-1),and fracture strain exceeding 2000%.Owing to the excellent processability of the DES-based electrolytes,provided by dynamic interactions such as the lithium and hydrogen bonding between the DES and polymer matrix,a directly written patterning in ECDs is realized for the first time.The fabricated ECDs exhibit an excellent electrochromic behavior superior to the behavior of the ECDs fabricated with traditional gel electrolytes.The introduction of such DES-based electrolytes is expected to pave the way for a widespread application of electrochromic products.