Flexible aqueous zinc-ion batteries(AZIBs)with air-recharging capability are a promising self-powered system applied in future wearable electronics.It is desired to develop high-capacity air-rechargeable AZIBs.Herein,...Flexible aqueous zinc-ion batteries(AZIBs)with air-recharging capability are a promising self-powered system applied in future wearable electronics.It is desired to develop high-capacity air-rechargeable AZIBs.Herein,we developed a flexible AZIB with air-recharging capability based on trinitrohexaazatrinaphthylene(TNHATN)cathode and a ZnSO_(4)electrolyte.The flexible Zn//TNHATN battery exhibits high volumetric energy density(21.36 mWh/cm^3)and excellent mechanical flexibility.Impressing,the discharged flexible Zn//TNHATN battery can be chemical self-charged via the redox reaction between TNHATN cathode and O_(2)from the air.After oxidation in air for 15 h,such flexible Zn//TNHATN battery can deliver a high specific capacity of 320 mAh/g at 0.5 A/g,displaying excellent air-recharging capability.Notably,this flexible Zn//TNHATN battery also works well in chemical or/and galvanostatic charging mixed modes,showing reusability.This work provides a new insight for designing flexible aqueous self-powered systems.展开更多
基金supported by the National Natural Science Foundation of China(No.21975034)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Research Project of State Key Laboratory of Coordination Chemistry。
文摘Flexible aqueous zinc-ion batteries(AZIBs)with air-recharging capability are a promising self-powered system applied in future wearable electronics.It is desired to develop high-capacity air-rechargeable AZIBs.Herein,we developed a flexible AZIB with air-recharging capability based on trinitrohexaazatrinaphthylene(TNHATN)cathode and a ZnSO_(4)electrolyte.The flexible Zn//TNHATN battery exhibits high volumetric energy density(21.36 mWh/cm^3)and excellent mechanical flexibility.Impressing,the discharged flexible Zn//TNHATN battery can be chemical self-charged via the redox reaction between TNHATN cathode and O_(2)from the air.After oxidation in air for 15 h,such flexible Zn//TNHATN battery can deliver a high specific capacity of 320 mAh/g at 0.5 A/g,displaying excellent air-recharging capability.Notably,this flexible Zn//TNHATN battery also works well in chemical or/and galvanostatic charging mixed modes,showing reusability.This work provides a new insight for designing flexible aqueous self-powered systems.