Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combina...Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combination of Energy Dispersive X-Ray Spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS) and X-ray powder diffraction(XRD) patterns were used to determine the successful synthesis of ZIF-67@CNFs.The size of the ZIF-67 particles and pore size of the ZIF-67@CNF membrane were50-200 nm and 150-350 nm, respectively.The prepared ZIF-67@CNF membrane exhibited excellent thermal stability,lower thermal shrinkage and high surface wettability.The discharge capacity retention of the Li-ion batteries(LIBs) made with ZIF-67@CNF,glass fiber(GF),CNF and commercial polymer membranes after 100 th cycle at 0.5 C rate were 88.41%,86.22%,83.27%,and 81.03%,respectively.LIBs with ZIF-67@CNF membrane exhibited a better rate capability than these with other membranes.No damage of porous structure or peel-off of ZIF-67 was observed in the SEM images of ZIF-67@CNF membrane after100 th cycle.The improved cycling performance,rate capability,and good electrochemical stability implied that ZIF-67@CNFs membrane can be considered as a good alternative LIB separator.展开更多
CD8^(+)T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6^(+)progenitor exhausted(Tex^(prog))and Tim-^(3+)terminally exhausted(Tex^(term))subpopulatio...CD8^(+)T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6^(+)progenitor exhausted(Tex^(prog))and Tim-^(3+)terminally exhausted(Tex^(term))subpopulations.Inhibitor of DNA binding protein 2(Id2)has been shown to play important roles in T-cell development and CD8^(+)T-cell immunity.However,the role of Id2 in CD8^(+)T-cell exhaustion is unclear.Here,we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells.Genetic deletion of Id2 dampens CD8^(+)T-cell-mediated immune responses and the maintenance of stem-like CD8^(+)T-cell subpopulations,suppresses PD-1 blockade and increases tumor susceptibility.Mechanistically,through its HLH domain,Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex,and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1.Therefore,Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter,modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+Texprog cells.An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice.Inhibition of LSD1 increases the abundance of Slamf6^(+)Tim-3^(−)Tex^(prog) cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+T cells.This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8^(+)T-cell exhaustion,and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.展开更多
SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape,compromising the effectiveness of existing vaccines and neutralizing antibodies.An in-depth investigation on COVID-19 pathogenesis ...SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape,compromising the effectiveness of existing vaccines and neutralizing antibodies.An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants.Here,we identified CD147 as a universal receptor for SARS-CoV-2 and its variants.Meanwhile,Meplazeumab,a humanized anti-CD147 antibody,could block cellular entry of SARS-CoV-2 and its variants-alpha,beta,gamma,and delta,with inhibition rates of 68.7,75.7,52.1,52.1,and 62.3%at 60μg/ml,respectively.Furthermore,humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants,alpha and beta.When infected,these mice developed exudative alveolar pneumonia,featured by immune responses involving alveoli-infiltrated macrophages,neutrophils,and lymphocytes and activation of IL-17 signaling pathway.Mechanistically,we proposed that severe COVID-19-related cytokine storm is induced by a"spike protein-CD147-CyPA signaling axis":Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway,which further induced expression of cyclophilin A(CyPA);CyPA reciprocally bound to CD147 and triggered MAPK pathway.Consequently,the MAPK pathway regulated the expression of cytokines and chemokines,which promoted the development of cytokine storm.Importantly,Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants.Therefore,our findings provided a new perspective for severe COVID-19-related pathogenesis.Furthermore,the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.展开更多
The Omicron variants of SARS-CoV-2,primarily authenticated in November 2021 in South Africa,has initiated the 5th wave of global pandemics.Here,we systemically examined immunological and metabolic characteristics of O...The Omicron variants of SARS-CoV-2,primarily authenticated in November 2021 in South Africa,has initiated the 5th wave of global pandemics.Here,we systemically examined immunological and metabolic characteristics of Omicron variants infection.We found Omicron resisted to neutralizing antibody targeting receptor binding domain(RBD)of wildtype SARS-CoV-2.Omicron could hardly be neutralized by sera of Corona Virus Disease 2019(COVID-19)convalescents infected with the Delta variant.Through mass spectrometry on MHC-bound peptidomes,we found that the spike protein of the Omicron variants could generate additional CD8+T cell epitopes,compared with Delta.These epitopes could induce robust CD8+T cell responses.Moreover,we found booster vaccination increased the cross-memory CD8+T cell responses against Omicron.Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells.Consistently,a greater fraction of memory CD8+T cells existed in Omicron stimulated peripheral blood mononuclear cells(PBMCs).In addition,CD147 was also a receptor for the Omicron variants,and CD147 antibody inhibited infection of Omicron.CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia.Taken together,our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.展开更多
基金support from Louisiana Board of Regents[LEQSF(2020-23)-RD-B-02,LEQSF(2018-19)-ENH-DE-06]Key Biomass Energy Laboratory of Henan Province(190506006 and 200606004)National Institute of Forest Science(Seoul,Korea)。
文摘Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combination of Energy Dispersive X-Ray Spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS) and X-ray powder diffraction(XRD) patterns were used to determine the successful synthesis of ZIF-67@CNFs.The size of the ZIF-67 particles and pore size of the ZIF-67@CNF membrane were50-200 nm and 150-350 nm, respectively.The prepared ZIF-67@CNF membrane exhibited excellent thermal stability,lower thermal shrinkage and high surface wettability.The discharge capacity retention of the Li-ion batteries(LIBs) made with ZIF-67@CNF,glass fiber(GF),CNF and commercial polymer membranes after 100 th cycle at 0.5 C rate were 88.41%,86.22%,83.27%,and 81.03%,respectively.LIBs with ZIF-67@CNF membrane exhibited a better rate capability than these with other membranes.No damage of porous structure or peel-off of ZIF-67 was observed in the SEM images of ZIF-67@CNF membrane after100 th cycle.The improved cycling performance,rate capability,and good electrochemical stability implied that ZIF-67@CNFs membrane can be considered as a good alternative LIB separator.
基金supported by the Major Program of the National Natural Science Foundation of China(No.82293635,No.92169211)the National Key Research and Development Program of China(No.2019YFC1316302,No.2023YFC2306400)+1 种基金the National Natural Science Foundation of China(No.81972711)supported by the Science Fund Program for Distinguished Young Scholars(LC).
文摘CD8^(+)T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6^(+)progenitor exhausted(Tex^(prog))and Tim-^(3+)terminally exhausted(Tex^(term))subpopulations.Inhibitor of DNA binding protein 2(Id2)has been shown to play important roles in T-cell development and CD8^(+)T-cell immunity.However,the role of Id2 in CD8^(+)T-cell exhaustion is unclear.Here,we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells.Genetic deletion of Id2 dampens CD8^(+)T-cell-mediated immune responses and the maintenance of stem-like CD8^(+)T-cell subpopulations,suppresses PD-1 blockade and increases tumor susceptibility.Mechanistically,through its HLH domain,Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex,and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1.Therefore,Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter,modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+Texprog cells.An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice.Inhibition of LSD1 increases the abundance of Slamf6^(+)Tim-3^(−)Tex^(prog) cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+T cells.This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8^(+)T-cell exhaustion,and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.
基金supported by the National Science and Technology Major Project of China(2019ZX09732-001)the Key R&D Plan Projects in Shaanxi Province(2020ZDXM2-SF-01)the Young Talent Fund of the University Association for Science and Technology in Shaanxi,China(20200304).
文摘SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape,compromising the effectiveness of existing vaccines and neutralizing antibodies.An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants.Here,we identified CD147 as a universal receptor for SARS-CoV-2 and its variants.Meanwhile,Meplazeumab,a humanized anti-CD147 antibody,could block cellular entry of SARS-CoV-2 and its variants-alpha,beta,gamma,and delta,with inhibition rates of 68.7,75.7,52.1,52.1,and 62.3%at 60μg/ml,respectively.Furthermore,humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants,alpha and beta.When infected,these mice developed exudative alveolar pneumonia,featured by immune responses involving alveoli-infiltrated macrophages,neutrophils,and lymphocytes and activation of IL-17 signaling pathway.Mechanistically,we proposed that severe COVID-19-related cytokine storm is induced by a"spike protein-CD147-CyPA signaling axis":Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway,which further induced expression of cyclophilin A(CyPA);CyPA reciprocally bound to CD147 and triggered MAPK pathway.Consequently,the MAPK pathway regulated the expression of cytokines and chemokines,which promoted the development of cytokine storm.Importantly,Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants.Therefore,our findings provided a new perspective for severe COVID-19-related pathogenesis.Furthermore,the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.
基金This work was supported by the Key Program of National Natural Science Foundation of China(92169211).L.C.was supported by National Natural Science Fund for Excellent Young Scientists Fund Program.
文摘The Omicron variants of SARS-CoV-2,primarily authenticated in November 2021 in South Africa,has initiated the 5th wave of global pandemics.Here,we systemically examined immunological and metabolic characteristics of Omicron variants infection.We found Omicron resisted to neutralizing antibody targeting receptor binding domain(RBD)of wildtype SARS-CoV-2.Omicron could hardly be neutralized by sera of Corona Virus Disease 2019(COVID-19)convalescents infected with the Delta variant.Through mass spectrometry on MHC-bound peptidomes,we found that the spike protein of the Omicron variants could generate additional CD8+T cell epitopes,compared with Delta.These epitopes could induce robust CD8+T cell responses.Moreover,we found booster vaccination increased the cross-memory CD8+T cell responses against Omicron.Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells.Consistently,a greater fraction of memory CD8+T cells existed in Omicron stimulated peripheral blood mononuclear cells(PBMCs).In addition,CD147 was also a receptor for the Omicron variants,and CD147 antibody inhibited infection of Omicron.CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia.Taken together,our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.